Kokanduni uz



Yüklə 15,42 Mb.
Pdf görüntüsü
səhifə140/1070
tarix20.11.2023
ölçüsü15,42 Mb.
#164100
1   ...   136   137   138   139   140   141   142   143   ...   1070
Ilmiy-amaliy konferensiya to‘plami

Illustrative examples: 
This equation of the form 
𝑦

+ 𝑝(𝑥)𝑦 = 𝑞(𝑥)
is called a linear 
differential equation, where 
𝑝(𝑥)
and 
𝑞(𝑥)
are continuous functions on some interval. 


90
www.
kokanduni.uz 
According to Bernoulli's method, we look for the solution of equation (1) in the form of the 
product of two unknown functions 
𝑢 = 𝑢(𝑥)
and
𝑣 = 𝑣(𝑥)

𝑦 = 𝑢𝑣(𝑦(𝑥) = 𝑢(𝑥) ⋅ 𝑣(𝑥))
(1) 
If we substitute 
𝑦 = 𝑢𝑣, 𝑦

= (𝑢𝑣)

= 𝑢

𝑣 + 𝑢𝑣

above for 
𝑦
and 
𝑦

in equation (1), then 
its derivative will be 
𝑋
1

= (𝑢𝑣)

= 𝑢

𝑣 + 𝑢𝑣


It seems absurd to introduce two unknown 
functions 
𝑢 = 𝑢(𝑥), 𝑣 = 𝑣(𝑥)
instead of the unknown function 
𝑦 = 𝑦(𝑥)
to be found. 
However, we will see later that the appropriate selection of one of the functions
𝑢 =
𝑢(𝑥)
and 
𝑣 = 𝑣(𝑥)
allows us to easily find the other. As a result
𝑦(𝑥)
is found. After 
substitution, the differential equation 
𝑢

𝑣 + 𝑢𝑣

+ 𝑝𝑢𝑣 = 𝑞
is formed. Now we choose the 
function 
𝑣

+ 𝑝𝑣 = 0 
in such a way (using the option of choosing this function arbitrarily) that 
we have
𝑢

𝑣 + 𝑢
(
𝑣

+ 𝑝𝑣
)
= 𝑞
. This differential equation comes to this variable A=C separable 
equation. Integrating the following equation 
𝑑𝑣
𝑣
= −𝑝𝑑𝑥
we find:

𝑑𝑣
𝑣
= −∫𝑝𝑑𝑥, 𝑙𝑛 𝑣 = −∫𝑝𝑑𝑥
𝑣 = 𝑒
−∫𝑝𝑑𝑥
(2) 
As a result, the differential equation (2) this takes the following view 
𝑢

𝑒
−∫𝑝𝑑𝑥
= 𝑞
We 
will solve it:
𝑒
−∫𝑝𝑑𝑥

𝑑𝑢
𝑑𝑥
= 𝑞,
𝑑𝑢
𝑑𝑥
= 𝑞𝑒
∫𝑝𝑑𝑥
,
𝑑𝑢 = 𝑞𝑒
∫𝑝𝑑𝑥
𝑑𝑥, 𝑢 = ∫𝑞𝑒
∫𝑝𝑑𝑥
𝑑𝑥 + 𝐶.
(3) 
From relations (3) and (4) it follows that
𝑦 = 𝑢𝑣 = (∫ 𝑞𝑒
∫ 𝑝𝑑𝑥
𝑑𝑥 + 𝐶)𝑒
−∫ 𝑝𝑑𝑥
. (4) 
So, 
𝑦

+ 𝑝𝑦 = 𝑞
is a generalization of the linear differential equation 
the solution is
𝑦 = 𝑢𝑣 = (∫ 𝑞𝑒
∫ 𝑝𝑑𝑥
𝑑𝑥 + 𝐶)𝑒
−∫ 𝑝𝑑𝑥
. (5)
Example 1,
find the general solution of this equation 
𝑦

+ 𝑥𝑦 = 𝑥
3
.
We find the general 
solution of this equation using formula (5).
𝑦 = (∫ 𝑥
3
𝑒
∫ 𝑥𝑑𝑥
𝑑𝑥 + 𝐶)𝑒
−∫ 𝑥𝑑𝑥
= (∫ 𝑥
3
𝑒
𝑥
2
2
𝑑𝑥 + 𝐶) 𝑒

𝑥
2
2
= 𝑥
2
− 2 + 𝐶𝑒

𝑥
2
2
Therefore, the general solution of the given equation is 
𝑦 = 𝑥
2
− 2 + 𝐶𝑒

𝑥2
2
.

Yüklə 15,42 Mb.

Dostları ilə paylaş:
1   ...   136   137   138   139   140   141   142   143   ...   1070




Verilənlər bazası müəlliflik hüququ ilə müdafiə olunur ©azkurs.org 2024
rəhbərliyinə müraciət

gir | qeydiyyatdan keç
    Ana səhifə


yükləyin