Mavzu: Aylana, ellips, giperbola, parabola. Reja


Parabola va uning kanonik tenglamasi



Yüklə 181,27 Kb.
səhifə4/4
tarix15.06.2022
ölçüsü181,27 Kb.
#61542
1   2   3   4
Mavzu Aylana, ellips, giperbola, parabola. Reja

5. Parabola va uning kanonik tenglamasi
6-ta„rif. Berilgan nuqtadan hamda berilgan to‟g‟ri chiziqdan teng uzoqlikda joylashgan tekislik nuqtalarining geometrik o‟rniga parabola deb ataladi.
Berilgan nuqtani F orqali belgilab uni parabolaning fokusi deb ataymiz.
Berilgan to‟g‟ri chiziqni parabolaning direktrisasi deb ataladi. (Fokus direktrisada yotmaydi deb faraz qilinadi).
Fokusdan direktrisagacha masofani p orqali belgilaymiz va uni parabolaning parametri deb ataymiz.
Endi parabolaning tenglamasini keltirib chiqaramiz. Abssissalar o‟qini fokusdan direktrisaga perpendikulyar qilib o‟tkazib yo‟nalishini direktrisadan fokusga tomon yo‟naltiramiz.
Koordinatalar boshini fokusdan direktrisagacha masofa FR ning qoq o‟rtasiga joylashtiramiz (11-rasm).
Tanlangan koordinatalar sistemasiga nisbatan fokus F p ;0
 2 
koordinatalarga, direktrisa x p tenglamaga ega bo‟ladi.
2
Faraz qilaylik M(x;y) parabolaning ixtiyoriy nuqtasi bo‟lsin. Parabolaning ta„rifiga binoan

11-rasm
M nuqtadan direktrisagacha MN masofa undan fokusgacha MF masofaga teng:

MN=MF 11-rasmdan MN p va
2
MF  (y  0) ekani ravshan.Demak, x   y .
Bu tenglamaning har ikkala tomonini kvadratga ko‟tarib
2 p2 2 p2 2 2 ixchamlasak x px   x px   y yoki y  2px (12)hosil bo‟ladi.
4 4
Shunday qilib parabolaning istalgan M(x,y) nuqtasining koordinatalari (12) tenglamani qanoatlantiradi. Parabolada yotmagan hech bir nuqtaning koordinatalari bu tenglamani qanoatlantirmasligini ko‟rsatish mumkin. Demak (12) parabolaning tenglamasi ekan. U parabolaning kanonik tenglamasi deb ataladi. p parabolaning parametri deb yuritiladi.
Endi kanonik tenglamasiga ko‟ra parabolani shaklini chizamiz (12) tenglamada y ni –y ga almashtirilsa tenglama o‟zgarmaydi. Bu abssissalar o‟qi parabolaning simmetriya o‟qidan iborat ekanligini bildiradi. (12) tenglamaning chap tomoni manfiy bo‟lmaganligi uchun uning o‟ng tomoni ya„ni x ning ham manfiy bo‟lmasligi kelib chiqadi. Demak parabola 0y o‟qning o‟ng tomonida joylashadi. x=0 da y=0. Demak parabola koordinatalar boshidan o‟tadi. x cheksiz o‟sganda y ning absalyut qiymati ham cheksiz o‟sadi. (12) tenglama yordamida aniqlanadigan parabola 12-rasmda tasvirlangan. Parabolaning simmetriya o‟qi uning fokal o‟qi deb ataladi.Parabolaning simmetriya o‟qi bilan kesishish nuqtasi uning uchi deyiladi. Qaralayotgan hol uchun koordinatalar boshi parabolaning uchi bo‟ladi.

12-rasm
Endi parabolaning koordinata o‟qlari bilan kesishish nuqtalarini topamiz.
Parabola tenglamasiga x=0 qiymatni qo‟ysak y=6 kelib chiqadi. Demak parabola

0y o‟q bilan 01(0,6) nuqtada kesishar ekan. Shuningdek paraborla tenglamasiga y=0 qiymatini qo‟ysak  1 x2  6  0;x2  48  0; x2  48; x 48  4 3
8

hosil bo‟ladi. Demak parabola 0x o‟q bilan (4 3,0) ва (4 3,0) nuqtalarda kesishar ekan.
Agar parabola tenglamasini y 6  1 x2 yoki х2=-8(у-6) ko‟rinishda yozib
8
x=X, y-6=Y almashtirish olsak uning tenglamasi Х2=-8У kanonik shaklni oladi.
Foydalanilgan adabiyotlar ro’yxati


www.arxiv.uz
www.google.com
www.referat.uz
Yüklə 181,27 Kb.

Dostları ilə paylaş:
1   2   3   4




Verilənlər bazası müəlliflik hüququ ilə müdafiə olunur ©azkurs.org 2024
rəhbərliyinə müraciət

gir | qeydiyyatdan keç
    Ana səhifə


yükləyin