Tekislikda biror O nuqtadan qo’yilgan nokollinear ixtiyoriy ikki vektor berilgan bo’lsin. Bu vektorlar sistemasi (xy) bazisni aniqlaydi. Tekislikda xy vektorlar orqali o’tuvchi a b (a b=0) to’g’ri chiziqlarni olamiz.
Tarif: Musbat yo’nalishlari mos ravishda vektorlar bilan aniqlanuvchi a , b to’g’ri chiziqlardan tashkil topgan sistematekislikda koordinatalarningAffin sistemasi yoki affin reper deyiladi (1-chizma) va u B=( ) ko’rinishida belgilanadi.
O=a b nuqta koordinatalar boshi, vektorlar esa kordinata vektorlari deyiladi. Musbat yo’nalishlari vektorlar bilan aniqlangan a, b to’g’ri chiziqlar mos ravishda absissalar va ordinatalar o’qlari deb ataladi, ularni Ox, Oy bilan belgilaymiz. Demak affin reper O nuqta va
bazis vektorlarning berilishi bilan to’liq aniqlanadi.
Tekislikda(O,x y) affin reper berilgan bo’lsin. Shu tekislikning M nuqtasi uchun OM vektor M nuqqtaning radius vektori deyiladi.
Tarif: OM radius vektorning koordinatalari Mnuqtaning affin reperidagi koordinatalari deyiladi; Biz M(x y) belgilashni ishlatamiz. Bunda x son M nuqtaning absissasi yoki birinchi koordinatasi , y son esa M nuqtaning ordinatasi yoki ikkinchi koordinatasi deyiladi.
Tanlangan affin reperining absissalar o’qiga koordinatalar boshidan boshlab vektorni , ordinatalar o’qiga esa qo’yib (2-chizma) xosil qilingan nuqtalardan mos ravishda Oy va Ox o’qlariga parallel to’g’ri chiziqlar o’tkazsak, ularning kesishgan nuqtasi izlanayotgan M nuqta bo’ladi.
Chunki Shunday qilib reperga nisbatan
M(x, y) M nuqtaning absissasi x=0 bo’lsa , nuqta Oy o’qda yotadi. Xuddi shunday M nuqtaning ordinatasi y=0 bo’lsa M nuqta absissalar o’qida yotadi.
Absissalar o’qida yotgan nuqtaning koordinatalari x, 0 va ordinatalar o’qida yotgan nuqtaning koordinatalari 0, y bo’ladi. Koordinatalar boshining koordinatalari 0, 0. koordinata o’qlari butun tekislikni 3-rasmda ko’rsatilgandek 4 ta qismga ajratadi.
S2-rasm
3-rasm
Vektorning boshi va oxirining koordinatalari biron affin reperiga nisbatan malum bo’lsa, bu vektorni shu bazisdagi koordinatalarini topishni ko’raylik. Bu xolda, va . Bundan yani vektorning koordinatalari shu vektor oxirining koordinatalaridan mos ravishda boshining koordinatalarini ayirish bilan xosil qilinadi.
1-MISOL: berilgan ( ) reperda A(3, -3), B(0, 3), C(-2, 0) nuqtalarni yasang. YECHISH: A(3, -3) nuqtani yasash uchun vektorni yasaymiz. Buning uchun O nuqtadan boshlab ga kollinear 3 vektorni, y ga kollinear -3 vektorni yasaymiz. Keyin bu vektorlarni yig’indisini topsak, vektor xosil qilinib izlayotgan A nuqtani topamiz. (4-rasm)