z
)
≤ Ch
−k−3(1−1/q)
,
1 ≤ q ≤ ∞, h = 0, 1.
We highlight that, in particular,
δ
h L
1
(T
z
)
≤ C
(4.10a)
δ
h L
2
(T
z
)
≤ Ch
−3/2
.
(4.10b)
The explicit construction of a such function is given in [13]. Next, we define the approximate
Green’s function (g, λ) ∈ [H
1
0
(Ω)]
3
× L
2
φ
(Ω) to be the solution of the following equation:
12
MAX-NORM STABILITY OF LOW ORDER TAYLOR-HOOD ELEMENTS
IN THREE DIMENSIONS
∆g +
λ = a(∂
x
j
δ
h
)e
i
in Ω
(4.11a)
· g = b(δ
h
− φ)
in Ω
(4.11b)
g = 0
on ∂Ω.
(4.11c)
Here e
i
denote the i-th standard basis vector in R
3
and will be fixed throughout the paper
and a, b ∈ R. Note that (2.3) implies that
Ω
(δ
h
(x) − φ(x))dx = 0. Again, λ is unique up to a
constant. In the course of the proof we will need estimates g and λ in certain H¨
older norms on
subdomains away from the singular point z. The next lemma is almost identical to Lemma 5.1
in [5]. We include the proof for completeness.
Lemma 4.1. Let D ⊂ Ω be such that dist(D, z) ≥ d ≥ 2h. Then there exists a constant C
independent of d and D such that
g
C
1+σ
(D)
+ λ
C
σ
(D)
≤ Cd
−3−σ
.
Proof. We use the Green’s function representation presented in Section 4.1
(g)
k
(x) = g
k
(x)
=
a
Ω
G
k,i
(x, ξ)(∂
ξ
δ
h
(ξ))dξ + b
Ω
G
i,4
(x, ξ)δ
h
(ξ)dξ
λ(x)
=
a
Ω
G
4,i
(x, ξ)(∂
ξ
δ
h
(ξ))dξ + b
Ω
G
4.4
(x, ξ)δ
h
(ξ)dξ
for k = 1, 2, 3 and i fixed. Then, we have
∂
x
g
k
(x) − ∂
y
g
k
(y)
=
a
Ω
(∂
x
G
k,i
(x, ξ) − ∂
y
G
k,i
(y, ξ))(∂
ξ
δ
h
(ξ))dξ
+b
Ω
(∂
x
G
i,4
(x, ξ) − ∂
y
G
i,4
(y, ξ))δ
h
(ξ)dξ
=
−a
Ω
∂
ξ
(∂
x
G
k,i
(x, ξ) − ∂
y
G
k,i
(y, ξ))δ
h
(ξ)dξ
+b
Ω
(∂
x
G
i,4
(x, ξ) − ∂
y
G
i,4
(y, ξ))δ
h
(ξ)dξ.
Let x, y ∈ D, x = y, then using that 1 ≤ i ≤ 3 by (4.8), we have
|∂
x
g
k
(z) − ∂
y
g
k
(y)|
|x − y|
σ
≤ a max
ξ∈T
z
|∂
ξ
∂
x
G
k,i
(x, ξ) − ∂
ξ
∂
y
G
k,i
(y, ξ))|
|x − y|
σ
δ
h L
1
(T
z
)
+b max
ξ∈T
z
|∂
x
G
k,i
(x, ξ) − ∂
y
G
k,i
(y, ξ)|
|x − y|
σ
δ
h L
1
(T
z
)
≤ 2C max{a, b} max
ξ∈T
z
(|x − ξ|
−3−σ
+ |y − ξ|
−3−σ
) ≤ C max{a, b}d
−3−σ
The last inequality is due to that for any ξ ∈ T
z
, |x − ξ|, |y − ξ| ≥ d/2, and δ
h L
1
(T
z
)
≤ C.
Therefore, taking supremum over k we conclude
x,y∈D
| g(x) −
g(y)|
|x − y|
σ
≤ C max{a, b}d
−3−σ
.
Similarly, for λ we have
MAX-NORM STABILITY OF LOW ORDER TAYLOR-HOOD ELEMENTS
IN THREE DIMENSIONS
13
λ(x) − λ(y)
=
−a
Ω
(∂
ξ
G
4,i
(x, ξ) − ∂
ξ
G
4,i
(y, ξ))δ
h
(ξ)dξ
+b
Ω
(G
4.4
(x, ξ) − G
4.4
(y, ξ))δ
h
(ξ)dξ
Then, for x, y ∈ D, x = y,
|λ(x) − λ(y)|
|x − y|
σ
≤ a max
ξ∈T
z
|∂
ξ
G
4,i
(x, ξ) − ∂
ξ
G
4,i
(y, ξ)|
|x − y|
σ
δ
h L
1
(T
z
)
+b max
ξ∈T
z
|G
4.4
(x, ξ) − G
4.4
(y, ξ)|
|x − y|
σ
δ
h L
1
(T
z
)
≤ 2C max{a, b} max
ξ∈T
z
(|x − ξ|
−3−σ
+ |y − ξ|
−3−σ
) ≤ C max{a, b}d
−3−σ
This completes the proof after taking the supremum.
Let (g
h
, λ
h
) ∈ V
h
× M
h
be the corresponding finite element solution, i.e., the unique solution
that satisfies
( (g − g
h
),
χ) − (λ − λ
h
,
· χ) = 0,
∀χ ∈ V
h
(4.12a)
(w,
· (g − g
h
))
=
0
∀w ∈ M
h
(4.12b)
and λ
h
∈ L
2
φ
(Ω). The next lemma is the analogue to lemma 5.2 in [5]. In this case we use the
local inf-sup condition instead of the quasi-local Fortin projection to achieve the result.
Lemma 4.2. There exists a constant C, independent of h and g, such that
(4.13)
(g − g
h
)
L
1
(Ω)
≤ C.
Proof. At this point we introduce some notations. Let e
g
= g−g
h
, η
g
= g−Pg and ξ
g
= Pg−g
h
,
clearly e
g
= η
g
+ξ
g
. Similarly, for the scalar variables e
λ
= λ−λ
h
, η
λ
= λ−Rλ and ξ
λ
= Rλ−λ
h
.
The proof is broken down, as the proof of Lemma 5.2 in [5], into four steps.
Step 1 (Dyadic decomposition). We assume without loss of generality that |Ω| ≤ 1. Define
d
j
= 2
−j
and J be the integer such that 2
−(J+1)
≤ Kh ≤ 2
−J
where K is a large enough
constant to be chosen later. Then, consider the following decomposition of Ω
(4.14)
Ω = Ω
∗
∪
J
j=0
Ω
j
where Ω
∗
= {x ∈ Ω : |x − z| ≤ Kh},
Ω
j
= {x ∈ Ω : d
j+1
≤ |x − z| ≤ d
j
}.
Henceforth, we will denote by C the generic constants not depending on K or h.
We break (4.13) using the dyadic decomposition (4.14) and then applying the Cauchy-Schwartz
(C-S.) inequality we obtain
e
g L
1
(Ω)
≤ CK
3/2
h
3/2
e
g L
1
(Ω
∗
)
+ C
J
j=0
d
3/2
j
e
g L
1
(Ω
j
)
.
14
MAX-NORM STABILITY OF LOW ORDER TAYLOR-HOOD ELEMENTS
IN THREE DIMENSIONS
Firstly, we estimate the term involving the set Ω
∗
h
3/2
e
g L
2
(Ω
∗
)
≤ h
3/2
e
g L
2
(Ω)
≤ Ch
5/2
( g
H
2
(Ω)
+ λ
H
1
(Ω)
)
≤ Ch
5/2
δ
h L
2
(T )
≤ C
Defining M
j
= d
3/2
j
e
g L
2
(Ω
j
)
, it follows that
(4.15)
e
g L
1
(Ω)
≤ CK
3/2
+
J
j=0
M
j
.
Step 2 (Initial Estimate for M
j
). Let us define the following sets:
Ω
j
=
{x ∈ Ω : d
j+2
≤ |x − z| ≤ d
j−1
}
Ω
j
=
{x ∈ Ω : d
j+3
≤ |x − z| ≤ d
j−2
}
Ω
j
=
{x ∈ Ω : d
j+4
≤ |x − z| ≤ d
j−3
}
Ω
j
=
{x ∈ Ω : d
j+5
≤ |x − z| ≤ d
j−4
}
We apply the local energy estimate proved in Theorem 2 to A
1
= Ω
j
and A
2
= Ω
j
(d = d
j
),
and any 0 < ε < 1,
e
g L
2
(Ω
j
)
≤ C ε
−1
η
g L
2
(Ω
j
)
+ (εd
j
)
−1
η
g L
2
(Ω
j
)
+ η
λ L
2
(Ω
j
)
(4.16)
+ε
e
g L
2
(Ω
j
)
+
C
εd
j
e
g L
2
(Ω
j
)
=
CI + ε
e
g L
2
(Ω
j
)
+
C
εd
j
e
g L
2
(Ω
j
)
.
(4.17)
We start treating the first three terms on the right-hand side.
I ≤ Cd
3/2
j
ε
−1
η
g L
∞
(Ω
j
)
+ (εd
j
)
−1
η
g L
∞
(Ω
j
)
+ η
λ L
∞
(Ω
j
)
(by C-S. ineq.)
≤ Cd
3/2
j
h
σ
(ε
−1
+ ε
−1
h
d
j
) g
C
1+σ
(Ω
j
)
+ λ
C
σ
(Ω
j
)
(by A2)
≤ Cd
3/2
j
h
σ
(ε
−1
+ ε
−1
h
d
j
)d
−3−σ
j
+ d
−3−σ
j
(by Lemma 4.1)
≤ Cd
−3/2
j
h
d
j
σ
ε
−1
+ ε
−1
h
d
j
+ 1
≤ Cd
−3/2
j
h
d
j
σ
ε
−1
1 +
h
d
j
Summarizing, we obtain the following estimate for M
j
M
j
≤ C
h
d
j
σ
ε
−1
1 +
h
d
j
+ εd
3/2
j
e
g L
2
(Ω
j
)
+ Cd
1/2
j
ε
−1
e
g L
2
(Ω
j
)
In Step 3 below we present a duality argument to estimate the last term on the right-hand
side.
Step 3 ( Duality argument). We use the following duality representation of the L
2
norm.
MAX-NORM STABILITY OF LOW ORDER TAYLOR-HOOD ELEMENTS
IN THREE DIMENSIONS
15
e
g L
2
(Ω
j
)
=
sup
v∈C
∞
c
(Ω
j
)
v
L2(Ω
j
)≤1
(e
g
, v).
Now, for each v ∈ C
∞
c
(Ω
j
) with v
L
2
(Ω
j
)
≤ 1, let w, ϕ be the solution of the problem:
−∆w +
ϕ
=
v
in Ω
· w = 0
in Ω
w
=
0
on ∂Ω.
Now, we test the variational problem associated with g − g
h
, i.e.
(e
g
, v)
=
( e
g
,
w) − (ϕ,
· e
g
)
=
( e
g
,
(w − Pw)) + ( e
g
,
Pw) − (ϕ − Rϕ,
· e
g
)
=
( e
g
,
η
w
) − (e
λ
,
· Pw) − (η
ϕ
,
· e
g
)
=
( e
g
,
η
w
) − (e
λ
,
· η
w
) − (η
ϕ
,
· e
g
)
=
( e
g
,
η
w
) − (η
λ
,
· η
w
) − (ξ
λ
,
· η
w
) − (η
ϕ
,
· e
g
)
=
( e
g
,
η
w
) − (η
λ
,
· η
w
) + ( ξ
λ
, η
w
) − (η
ϕ
,
· e
g
)
=:
J
1
+ J
2
+ J
3
+ J
4
In order to make the estimates for J
1
, J
2
, J
3
, J
4
clearer, we establish the following results.
Proposition 4.1. There exists C > 0 independent of h such that
(i)
η
w L
2
(Ω)
+ η
ϕ L
2
(Ω)
≤ Ch
(ii)
η
w L
∞
(Ω\Ω
j
)
+ η
ϕ L
∞
(Ω\Ω
j
)
≤ C
h
d
j
σ
d
−1/2
j
(iii)
η
λ L
2
(Ω
j
)
≤ Cd
−3/2
j
(iv)
η
λ L
1
(Ω)
≤ C.
Next, we split J
i
, into two terms as follows
J
i
= J
i
|
Ω
j
+ J
i
|
Ω\Ω
j
, for i = 1, 2, 3, 4.
For example J
1
= J
1
|
Ω
j
+ J
1
|
Ω\Ω
j
= ( e
g
,
η
w
)
Ω
j
+ ( e
g
,
η
w
)
Ω\Ω
j
and estimate them using
Cauchy-Schwartz inequality, in L
2
norm in Ω
j
and in L
1
− L
∞
norms in Ω\Ω
j
.
We start estimating J
1
, and J
4
using Proposition 4.1 (i) and (ii)
J
1
|
Ω
j
≤
e
g L
2
(Ω
j
)
η
w L
2
(Ω)
≤ Ch
e
g L
2
(Ω
j
)
,
J
1
|
Ω\Ω
j
≤
e
g L
1
(Ω)
η
w L
∞
(Ω\Ω
j
)
≤ Cd
−1/2
j
h
d
j
σ
e
g L
1
(Ω)
,
J
4
|
Ω
j
≤
η
ϕ L
2
(Ω)
e
g L
2
(Ω
j
)
≤ Ch
e
g L
2
(Ω
j
)
,
J
4
|
Ω\Ω
j
≤
η
ϕ L
∞
(Ω\Ω
j
)
e
g L
1
(Ω)
≤ Cd
−1/2
j
h
d
j
σ
e
g L
1
(Ω)
.
Hence
16
MAX-NORM STABILITY OF LOW ORDER TAYLOR-HOOD ELEMENTS
IN THREE DIMENSIONS
(4.18)
J
1
+ J
4
≤ Ch
e
g L
2
(Ω
j
)
+ Cd
−1/2
j
h
d
j
σ
e
g L
1
(Ω)
To estimate J
2
we apply Proposition 4.1 (i) and (ii) as before and then apply (iii) and (iv)
J
2
|
Ω
j
≤
η
λ L
2
(Ω
j
)
η
w L
2
(Ω)
≤
η
λ L
2
(Ω
j
)
Ch ≤ Chd
−3/2
j
J
2
|
Ω\Ω
j
≤
η
λ L
1
(Ω)
η
w L
∞
(Ω\Ω
j
)
≤
η
λ L
1
(Ω)
C
h
d
j
σ
d
−1/2
j
≤ C
h
d
j
σ
d
−1/2
j
.
Then
(4.19)
J
2
≤ C(hd
−3/2
j
+
h
d
j
σ
d
−1/2
j
)
It remains to estimate J
3
. We first estimate J
3
|
Ω
j
. Applying C-S. inequality and Prop. 4.1
(i), we get
J
3
|
Ω
j
= ( ξ
λ
, η
w
)
˜
Ω
j
≤
ξ
λ L
2
(Ω
j
)
η
w L
2
(Ω)
≤ Ch
2
ξ
λ L
2
(Ω
j
)
To estimate the term in the right-hand side we use the local inf-sup condition A5, the identity
e
λ
= η
λ
+ ξ
λ
, integration by parts, (4.12a), C-S. inequality and Prop. 4.1 (iii), obtaining
βh
ξ
λ L
2
(Ω
j
)
≤
sup
z∈V
h
supp(z)⊆ ˜
Ω
j
(ξ
λ
,
· z)
z
H
1
( ˜
Ω
j
)
≤
sup
z∈V
h
supp(z)⊆ ˜
Ω
j
(e
λ
− η
λ
,
· z)
z
H
1
( ˜
Ω
j
)
≤
η
λ L
2
( ˜
Ω
j
)
+
sup
z∈V
h
supp(z)⊆ ˜
Ω
j
(e
λ
,
· z)
z
H
1
( ˜
Ω
j
)
≤
η
λ L
2
( ˜
Ω
j
)
+
sup
z∈V
h
supp(z)⊆ ˜
Ω
j
( e
g
, z)
z
H
1
( ˜
Ω
j
)
≤
η
λ L
2
( ˜
Ω
j
)
+
e
g L
2
( ˜
Ω
j
)
≤ Cd
−3/2
j
+
e
g L
2
( ˜
Ω
j
)
,
where ˜
Ω
j
⊇ Ω
j
with dist( ˜
Ω
j
, Ω
j
) ≤ lh. Observe that Ω
j
⊆ ˜
Ω
j
⊂ Ω
j
Hence,
(4.20)
J
3
|
Ω
j
≤ Ch(Cd
−3/2
j
+
e
g L
2
( ˜
Ω
j
)
)
For J
3
|
Ω\Ω
j
, C-S. inequality and Prop. 4.1 (ii) yield to
J
3
|
Ω\Ω
j
≤
ξ
λ L
1
(Ω)
η
w L
∞
(Ω\Ω
j
)
≤ C
h
d
j
σ
d
−1/2
j
h
ξ
λ L
1
(Ω)
To estimate the term in the right-hand side we use the L
1
inf-sup condition (A 6), the identity
e
λ
= η
λ
+ ξ
λ
, integration by parts, (4.12a), C-S. inequality and Prop. 4.1 (iv), obtaining
MAX-NORM STABILITY OF LOW ORDER TAYLOR-HOOD ELEMENTS
IN THREE DIMENSIONS Dostları ilə paylaş: |