Max-norm stability of low order taylor-hood elements in three dimensions



Yüklə 369,88 Kb.
Pdf görüntüsü
səhifə5/5
tarix07.01.2017
ölçüsü369,88 Kb.
#4851
1   2   3   4   5


T ∈B



h

h

2



T

|q|


2

H

1



(T )



1/2

≥ Ch


2

|q|


H

1

(B)



.

MAX-NORM STABILITY OF LOW ORDER TAYLOR-HOOD ELEMENTS

IN THREE DIMENSIONS

23

Finally, using the same arguments we prove the assumption A6.



Lemma 5.2. Assume that every mesh element has at least 3 edges in int(Ω). There exists a

constant c > 0 independent of h such that

sup

v∈V


h

\{0}


(q,

· v)


v

W

1



(Ω)


≥ ch

q

L



1

(Ω)


,

∀q ∈ M


h

.

Proof. Similarly to the previous proof we define the number of internal edges N



i

ed

. For edge i,



with 1 ≤ i ≤ N

i

ed



denote by d

i

, f



i

and m


i

as before. Define v ∈ V

h

for q ∈ M



h

and for all T ∈ T

h

as follows



v = 0,

at the vertices of T

v(m

i

) = −l



i

τ

i



sgn(∂

τ

i



q),

for all the interior edges i of T

Then, it is clear that v ∈ V

h

and



q

· vdx = −



v ·


qdx

=



T ∈T

h

T



v ·

qdx


=

T ∈T



h

m∈T


v(m) ·

q(m)


5

n∈T



v(n) ·

q(n)


20

|T |


=

T ∈T



h

m

i



∈T

v(m


i

) ·


q(m

i

)



5

|T |


=

T ∈T


h

m

i



∈T

|∂

τ



i

q|l


i

|T |


5

≥ c


T ∈T

h

h



T

q

L



1

(T )


.

Recalling again that the inequality | q · τ

i

| ≤ | q| is possible thanks to that every element has



at least 3 internal edges. Furthermore, using the definition of v and its local shape function

representation we have

v

W



1

(Ω)


≤ Ch

−1

max



T ∈T

h

max



m

i

∈T



|v(m

i

)| ≤ C.



This completes the proof.

References

[1] D. Boffi, Three-dimensional finite element methods for the Stokes problem, SIAM J. Numer. Anal. 34

(1997), no. 2, 664-670.

[2] M. Dauge, Stationary Stokes and Navier-Stokes systems ot two- or three-dimensional domains with corners.

I.Linearized equations, SIAM J. Math. Anal., Vol. 20 (1989), pp. 74-97.

[3] A. Demlow, J. Guzm´

an and A. Schatz, Local energy estimates for the finite element method on sharply

varying grids, Math. Comp. 80 (2011), no. 273, 1-9.

[4] A. Ern and J-L. Guermond, Theory and practice of finite elements. Springer Series in Applied Mathemat-

ical Sciences, Vol. 159 (2004) 530 p., Springer-Verlag, New York.


24

MAX-NORM STABILITY OF LOW ORDER TAYLOR-HOOD ELEMENTS

IN THREE DIMENSIONS

[5] J. Guzm´

an and D. Leykekhman, Pointwise error estimates of finite element approximations to the Stokes

problem on convex polyhedra. Math. Comp., Vol. 81 (2012), pp. 1879-1902.

[6] J. Guzm´

an, D. Leykekhman, J. Rossmann, and A. H. Schatz, H¨

older estimates for Green’s functions

on convex polyhedral domains and their applications to finite element methods, Numer. Math., 112 (2009),

pp. 221–243.

[7] V. G. Maz’ya and B. A. Plamenevski˘i, The first boundary value problem for classical equations of math-

ematical physics in domains with piecewise-smooth boundaries. I, Z. Anal. Anwendungen, 2 (1983), pp.

335-259.


[8] V. G. Maz’ya and B. A. Plamenevski˘i, The first boundary value problem for classical equations of math-

ematical physics in domains with piecewise-smooth boundaries. II, Z. Anal. Anwendungen, 2 (1983), pp.

523-551.

[9] V. G. Maz’ya and J. Rossmann, Pointwise estimates for Green’s kernel of a mixed boundary value problem

to the Stokes system in a polyhedral cone, Math. Nachr., 278 (2005), pp. 1766-1810 (1983), pp. 523-551.

[10] V. G. Maz’ya and J. Rossmann, Elliptic equations in polyhedral domains, vol. 162 of Mathematical Surveys

and Monographs, American Mathematical Society, Providence, RI, 2010.

[11] J. Rossmann,Green’s matrix of the Stokes system in a convex polyhedron, Rostock. Math. Kolloq., 65 (2010),

pp 1-14.

[12] J. Rossmann, H¨

older estimates for Green’s matrix of the Stokes systems in convex polyhedra, in around the

research of Vladimir Maz’ya. II, vol. 12 of Int. Math. Ser. (N. Y. ), Springer, New York, 2010, pp 315-336.

Z. Anal. Anwendungen, 2 (1983), pp. 523-551.

[13] A. H. Schatz and L. B. Wahlbin, Interior maximim-norm estimates for finite element methods. II, Math.

Comp., Vol. 64 (1995), pp. 907-928.

[14] R. Dupont and R. Scott, Polynomial approximation of functions in Sobolev spaces, Math. Comp. 34 (1980),

no. 150, 441-463.

[15] V. Girault and P.-A. Raviart, Finite element methods for Navier-Stokes equations. Theory and algo-

rithms, vol. 5 of Springer Series in Computational Mathematics, Springer-Verlag, Berlin, 1986.

[16] V. Girault and L. R. Scott, A quasi-local interpolation operator preserving the discrete divergence, Cal-

colo, 40 (2003), pp. 1–19.

[17] R. Scott and S. Zhang, Finite element interpolation of nonsmooth functions satisfying boundary condi-

tions, Math. Comp. 54 (1990), no. 190, 483-493.

[18] V. Girault, R. H. Nochetto, and R. Scott, Maximum-norm stability of the finite element Stokes pro-

jection, J. Math. Pures Appl. (9), 84 (2005), pp. 279–330.

[19]


, Pointwise error estimates for finite element solutions of the Stokes problem, SIAM J. Numer. Anal.,

44 (2006), pp. 1–28 (electronic).

[20] D. N. Arnold and X. B. Liu, Local error estimates for finite element discretizations of the Stokes equations,

RAIRO Mod´

el. Math. Anal. Num´

er., 29 (1995), pp. 367–389.



Yüklə 369,88 Kb.

Dostları ilə paylaş:
1   2   3   4   5




Verilənlər bazası müəlliflik hüququ ilə müdafiə olunur ©azkurs.org 2024
rəhbərliyinə müraciət

gir | qeydiyyatdan keç
    Ana səhifə


yükləyin