Coursework[edit]
Standards set by each country's accreditation society are intended to provide uniformity in fundamental subject material, promote competence among graduating engineers, and to maintain confidence in the engineering profession as a whole. Engineering programs in the U.S., for example, are required by ABET to show that their students can "work professionally in both thermal and mechanical systems areas."[33] The specific courses required to graduate, however, may differ from program to program. Universities and institutes of technology will often combine multiple subjects into a single class or split a subject into multiple classes, depending on the faculty available and the university's major area(s) of research.
The fundamental subjects required for mechanical engineering usually include:
Mathematics (in particular, calculus, differential equations, and linear algebra)
Basic physical sciences (including physics and chemistry)
Statics and dynamics
Strength of materials and solid mechanics
Materials engineering, composites
Thermodynamics, heat transfer, energy conversion, and HVAC
Fuels, combustion, internal combustion engine
Fluid mechanics (including fluid statics and fluid dynamics)
Mechanism and Machine design (including kinematics and dynamics)
Instrumentation and measurement
Manufacturing engineering, technology, or processes
Vibration, control theory and control engineering
Hydraulics and Pneumatics
Mechatronics and robotics
Engineering design and product design
Drafting, computer-aided design (CAD) and computer-aided manufacturing (CAM)[34][35]
Mechanical engineers are also expected to understand and be able to apply basic concepts from chemistry, physics, tribology, chemical engineering, civil engineering, and electrical engineering. All mechanical engineering programs include multiple semesters of mathematical classes including calculus, and advanced mathematical concepts including differential equations, partial differential equations, linear algebra, abstract algebra, and differential geometry, among others.
In addition to the core mechanical engineering curriculum, many mechanical engineering programs offer more specialized programs and classes, such as control systems, robotics, transport and logistics, cryogenics, fuel technology, automotive engineering, biomechanics, vibration, optics and others, if a separate department does not exist for these subjects.[36] Most mechanical engineering programs also require varying amounts of research or community projects to gain practical problem-solving experience. In the United States it is common for mechanical engineering students to complete one or more internships while studying, though this is not typically mandated by the university. Cooperative education is another option. Future work skills[37] research puts demand on study components that feed student's creativity and innovation.[38] Job duties[edit]
Mechanical engineers research, design, develop, build, and test mechanical and thermal devices, including tools, engines, and machines.
Mechanical engineers typically do the following:
Analyze problems to see how mechanical and thermal devices might help solve the problem.
Design or redesign mechanical and thermal devices using analysis and computer-aided design.
Develop and test prototypes of devices they design.
Analyze the test results and change the design as needed.
Oversee the manufacturing process for the device.
Manage a team of professionals in specialized fields like mechanical drafting and designing, prototyping, 3D printing or/and CNC Machines specialists.
Mechanical engineers design and oversee the manufacturing of many products ranging from medical devices to new batteries. They also design power-producing machines such as electric generators, internal combustion engines, and steam and gas turbines as well as power-using machines, such as refrigeration and air-conditioning systems.
Like other engineers, mechanical engineers use computers to help create and analyze designs, run simulations and test how a machine is likely to work.