Bir o’zgaruvchili funksiya haqida tushuncha. Funksiyaning aniqlanish sohasi va qiymatlar to’plami. n o’lchovli haqiqiy fazoda nuqtalar to’plami berilgan bo’lsin.
V to’plamga tegishli har bir nuqtaga aniq biror-bir y haqiqiy sonni mos qo’yuvchi f qonunga x1, x2, …, xn o’zgaruvchilarning V nuqtalar to’plamida berilgan funksiyasi deyiladi. n ta o’z-garuvchilarning funksiyasi y = f (M) yoki y = f (x1; x2; …; xn) ko’rinishda yoziladi. f (M) haqiqiy son y funksiyaning M nuqtada erishadigan qiymatini anglatadi.
Xususan, agar V є R1 bo’lib, V to’plam R1={x} haqiqiy sonlar to’plamining qism osti to’plamidan iborat bo’lsa, V to’plamda bir o’zgaruvchili y =f (x) funksiya berilgan deyiladi.
Misollar: 1) to’plamda berilgan bir x o’zgaruvchili funksiya. Xususan, єf (e) = lne = 1.
2) to’plamda berilgan ikki va o’zgaruvchili funksiya. M(- 1; 2) nuqtada .
3) to’plamda berilgan uch x1, x2 va x3 o’zgaruvchili funksiya. nuqtada
funksiya berilgan fazoga tegishli to’plamga uning aniqlanish sohasi deyiladi va yoki yozuv bilan ifodalanadi. funksiya o’z aniqlanish sohasi ning har bir nuqtasida qabul qilishi mumkin bo’lgan barcha qiymatlari to’plamiga esa uning qiymatlari to’plami yoki o’zgarish sohasi deyiladi. Funksiya qiymatlar to’plami R1 haqiqiy sonlar to’plamining qism osti to’plami bo’lib, yoki belgilar bilan yoziladi.
Misollar: Quyida berilgan funksiyalarning aniqlanish sohalarini toping va tegishli fazoda tasvirlang. Funksiyalarning qiymatlar to’plamini aniqlang:
1) 2)
3)
1) bir o’zgaruvchili funksiya aniqlanish sohasi tengsizlik yechimidan iborat. Shunday qilib, . Funksiya aniqlanish sohasi sonlar o’qida ochiq nur ko’rinishida tasvirlanadi:
Funksiya qiymatlari to’plami esa sonlar o’qidan iborat, ya’ni .
2) funksiya ikki o’zgaruvchili bo’lib, uning aniqlanish sohasi . Funksiya aniqlanish sohasi haqiqiy koordinatalar tekisligi R2 da quyidagicha tasvirlanadi: