Mustaqil ish. Mavzu: Hosila yordamida funksiyani toʻla tekshirish



Yüklə 281 Kb.
səhifə1/8
tarix28.04.2023
ölçüsü281 Kb.
#104486
  1   2   3   4   5   6   7   8
Mustaqil ish. Mavzu Hosila yordamida funksiyani to la tekshiris


O’ZBEKISTON RESPUBLIKASI OLIY VA O’RTA TA’LIM VAZIRLIGI.

TOSHKENT DAVLAT IQTISODIYOT UNIVERSITETI SAMARQAND FILIALI


BUXGALTERIYA HISOBI VA AUDIT TARMOQLAR ‘‘FAKULTETI AMALIY MATEMATIKA FANIDAN’’
MUSTAQIL ISH.


Mavzu: Hosila yordamida funksiyani toʻla tekshirish


Bajardi: BX 122guruh talabasi Narziqulov Oybek bajardi Tekshirdi: Ubaydullayev Ulugʻbek
Mavzu: Hosila yordamida funksiyani toʻla tekshirish
REJA:



  1. Funksiyaning o`sish va kamayish shartlari

  2. Funksiya ekstrcmumining zaruriy sharti

  3. Funksiyaning to`plamda eng katta va eng kichik qiymatlari

  4. Funksiyaning qavariqligi. Egilish nuqtalari

  5. Funksiyani tekshirish va grafigini chizishning umumiy sxemasi

  6. Ko`p o`zgaruvchili funksiyaning differensial hisobi



  1. Funksiyaning o`sish va kamayish shartlari

Funksiyaning o`zgarish xarakteri bilan uning hosilasi orasida bog`-liqlik mavjud bo`lib, hosila yordamida fiinksiya tabiatiga mansub bir qator xossalarni aniqlash mumkin.


V= [a;b] oraliqda у = f(x) fiinksiya berilgan bo`lib, har qanday shu oraliqdan tanlanadigan ikki x1 va x2 sonlar uchun x1 < x2 munosabatdan f(x1)2) (f(x1)>f(x2)) tengsizlik kelib chiqsa, u holda у = f(x) funksiya V oraliqda o`suvchi (kamayuvchi) deyilishini eslatib o`tamiz (3-§ ga qarang).
V= [a;b] kesmada aniqlangan у = f(x) funksiya, shu kesmada uzluksiz va (a;b) intervalda differensiallanuvchi bolsin. Funksiyaning V oraliqda o`sishi (yoki kamayishi)ning yetarli sharti quyidagi teoremadan iborat.
1 - Teorema. V oraliqda differensiallanuvchi f(x) funksiya shu oraliqda o`suvchi (kamayuvchi) bo`lishi uchun, oraliqning har bir ichki nuqtasida P(x) hosilaning musbat (manfiy) bo`lishi yetarli.
X oraliqqa tegishli har qanday x1 va x2 nuqtalar qaralmasin, [x1;x2] kesmada f(x) funksiya uchun Lagranj teoremasi o`rinli, ya`ni, f(x2) - f(x1) = f(c) (x2 - x1), bu yerda x1 < x2 va с € (x1;x2). Tenglikdan, agar f(c) > 0 bo`lsa, f(x2) > f(x1) va funksiya o`suvchi, agarda f(c) < 0 bo`lsa, f(x2)< f(x1) va funksiya kamayuvchi ekanligi kelib chiqadi.
F unksiya monotonlik alomatlarining geometrik izohi 1 rasmlarda keltirilgan.

a) f ′(c1) = tga1>0b) b) f ′(c2) = tg a2 < 0


1 - rasm.


у = f(x) funksiya grafigiga o`tkazilgan urinmalar X oraliq ichki nuqtalarida OX o`qi musbat yo`nalishi bilan o`tkir burchak hosil etsa, funksiya o`suvchi, o`tmas burchak hosil qilsa kamayuvchidir.


Masala. у = x- e-2x funksiyani monotonlikka tekshiring.
Berilgan funksiya R da aniqlangan va har bir x€R nuqtada y`(x) = e-2x · (1 - 2x) hosilaga ega bo`lib, differensiallanuvchidir. Agar x < 1/2 bo`lsa, y`(x) > 0 bo`lib, funksiya o`suvchi, agarda x > 1/2 bo`lsa, y(x) <0 bo`lib, funksiya kamayuvchidir.
Demak, у = х·е-2х fijnksiya (-∞; l/2) oraliqda monoton o`suvchi, (l/2; ∞) oraliqda esa monoton kamayuvchidir.
Masala. f(x) = x-arctgx fiinksiyaning sonlar o`qida o`suvchi ekanligini isbotlang.
f ` (x) = (x-arctgx)` = 1 - 1/1+x2 bo`lib, har bir x€R uchun, f `(x) > 0. Demak, funksiya R da monoton o`suvchi.



Yüklə 281 Kb.

Dostları ilə paylaş:
  1   2   3   4   5   6   7   8




Verilənlər bazası müəlliflik hüququ ilə müdafiə olunur ©azkurs.org 2024
rəhbərliyinə müraciət

gir | qeydiyyatdan keç
    Ana səhifə


yükləyin