2.2 Parabolalar (Simpson) formulasi
[a.b] kesmani juft sonda n=2m bo`laklarga ajratamiz. kesmalarga mos va berilgan y=f(x) egri chiziq bilan chegaralangan egri chiziqli trapetsiyaning yuzini uchta nuqtadan o`tuvchi va o`qi oy o`qi parallel bo`lgan ikkinchi darajali parabola bilan chegaralangan egri chiziqli trapedsiyaning yuzi bilan almashtiramiz. (13-chizma).
13-chizma 14-chizma
Bunday egri chiziqli trapetsiyani parabolik trtapetsiya deb ataymiz.
O`qi Oy o`qqa parallel bo`lgan parabolaning tenglamasi ko`rinishda bo`ladi. A,B va C koeffitsentlar parabolaning berilgan uch nuqta orqali o`tish shartidan bir qiymatli ravishda aniqlanadi. Shunga o`xshagan parabolalarni kesmalarning boshqa juftlari uchun ham yasaymiz. Shunday yasalgan parabolik trapetsiyalar yuzlarining yig`indisi integralning taqribiy qiymatini beradi (14-chizma ).
Lemma. Agar egri chiziqli trapersiya (6)parabola , Ox o`q va oralig`i 2h ga teng bo`lgan ikkita ordinata bilan chegaralangan bo`lsa, u holda uning yuzi ga teng, bunday va chetdagi ordinatalar esa egri chiziqning kesma o`rtasidagi ordinatasi.
Isboti [1], 455 betda.
(7) formuladan foydalanib, quyidagi taqribiy qiymatlarni yozamiz.
Yuqoridagi taqribiy qiymatlarning chap va o`ng tomonlarini qo`shib, chapda izlanayotgan integralni, o`ngda esa uning taqribiy qiymatini xosil qilamiz:
yoki
(9) formulaga Simpson formulasi deyiladi. Bu yerda bo`linish nuqtalarining soni 2m ixtiyoriy, lekin bu son qancha katta bo`lsa, (9) tenglikning o`ng tomonidagi yig`indi integral qiymatini shuncha aniq ifodalaydi.
18-misol.
integralni to`g`ri ro`rtburchaklar trapetsiya va Simpson taqribiy formulalardan foydalanib 0.0001aniqlikda hisoblang.
Yechish. [2;10] kesmani teng n=8 ta bo`lakka bo`lamiz. U holda bo`ladi. Integral ostidagi funksiya qiymatlari jadvalini tuzamiz:
2-jadval
1-usul. To`g`ri to`rtburchaklar usuli. (3) formulaga asosan:
(3) formulaga asosan:
Dostları ilə paylaş: |