O‘zgaruvchi kuch bajargan ishni hisoblash masalasi. Yo‘nalishi va kattaligi o‘zgarmas bo‘lgan kuch ta’sirida moddiy nuqta L to‘g‘ri chiziq bo‘ylab harakat qilayotgan bo‘lsin. Bunda kuch yo‘nalishi bilan moddiy nuqtaning harakat yo‘nalishi bir xil deb olamiz. Agar bu shartlarda kattaligi f bo‘lgan kuch ta’sirida moddiy nuqta L to‘g‘ri chiziq bo‘ylab a nuqtadan b nuqtaga ko‘chirilsa, ya’ni b–a masofaga siljigan bo‘lsa, unda bajarilgan ish A=f∙( b–a) formula bilan aniqlanishi bizga maktab fizika kursidan ma’lum.
Endi yuqoridagi shartlardan kuch kattaligi o‘zgarmas degan shartdan voz
kechib, u harakatning har bir x nuqtasida biror uzluksiz f(x) funksiya bo‘yicha o‘zgarib boradigan umumiyroq holni qaraymiz. Bu holda kuch moddiy nuqtani [a,b] kesma bo‘yicha harakatlantirganda bajarilgan A ishni hisoblash masalasi paydo bo‘ladi. Bu masalani yechish uchun moddiy nuqtani bosib o‘tgan yo‘lini ifodalovchi [a,b] kesmani oldingi masaladagi singari n ta bo‘laklarga ajratib, har bir [хi–1, хi] (i=1,2, ... , n) kichik kesmada o‘zgaruvchi kuchning bajargan ishini Аi deb belgilaymiz. Bu holda [а, b] kesmada bajarilgan umumiy A ish qiymatini
(4)
yig‘indi ko‘rinishida ifodalash mumkin. Bu yerda ham Аi ishning aniq qiymatini hisoblay olmaymiz. Ularning taqribiy qiymatlarini hisoblash uchun [хi-1, хi] kesmachalarning har biridan ixtiyoriy i nuqtani tanlab olamiz va unda kuchning f(i) qiymatini hisoblaymiz. Uzunligi xi=xi–xi–1 bo‘lgan bu kichik kesmada kuch kattaligi o‘zgarmas va f(i) deb hisoblab, ushbu taqribiy tengliklarni yoza olamiz:
А1 f(1)∙ х1 , А2 f(2)∙ х2 , …, Аi f(i)∙ хi , …, Аn f(n)∙ хn .
Bularni (4) yig‘indiga qo‘yib, izlanayotgan A ishning taqribiy qiymatini topamiz:
. (5)
Bu yerda ham [хi-1, хi] bo‘laklar soni n oshib borgan sari (5) taqribiy tenglik xatoligi tobora kamayib boradi deb kutish mumkin. Shu sababli A ishning aniq qiymati
(6)
limit orqali ifodalanadi.
|