Reja: Monoton funksiyalarning uzluksizligi va uzilish nuqtasi. Uzluksiz funksiyaning nolga aylanishi haqidagi teorema. Uzluksiz funksiyaning oraliq qiymatlari haqidagi teorema Teskari funksiyaning mavjudligi va uzliksizligi



Yüklə 424,5 Kb.
səhifə1/6
tarix28.02.2023
ölçüsü424,5 Kb.
#85901
  1   2   3   4   5   6
matematika nnnn


Chegaralangan va monoton funksiyalar. Murakab va teakari funksiyalar


Reja:

  1. Monoton funksiyalarning uzluksizligi va uzilish nuqtasi.

  2. Uzluksiz funksiyaning nolga aylanishi haqidagi teorema.

  3. Uzluksiz funksiyaning oraliq qiymatlari haqidagi teorema

  4. Teskari funksiyaning mavjudligi va uzliksizligi.

  5. Tekis uzluksiz funksiya. Kantor teoremasi.


Monoton funksiyalarning uzluksizligi va uzilish nuqtasi.
Teorema. Agar f(x) funksiya X oraliqda (qat`iy) monoton funksiya bo`lsa, u shu oraliqning istalgan nuqtasida uzluksiz bo`ladi yoki faqat birinchi tur uzilishga (sakrashga) ega bo`ladi.
Isbot. f(x) funksiya X oraliqda o`suvchi bo`lsin. nuqta X ning ichki nuqtasi , ya`ni nuqtaning biror ( - ; + ) atrofii X ga tegishli bo`lsin. f(x) funksiya o`suvchi bo`lgani uchun barcha x larda f(x) f( ) ya`ni funksiya yuqoridan chegaralangan. Shuning uchun u chekli f( ­- 0) f( ) limitga ega. Xuddi shu kabi chekli f( +0) limit mavjud bo`lib, f( -0) f( ) bo`ladi.
Agar f( -0)=f( )=f( +0) bo`lsa, funksiya nuqtada uzluksiz bo`ladi. Aks holda f( -0)< f( +0) bo`lib, funksiyaning birinchi tur uzilish nuqtasi bo`ladi.
Monoton kamayuvchi funksiya uchun ham shu kabi isbotlanadi.
Teorema. Agar f(x) funksiya X oraliqda monoton bo`lib, uning qiymatlari biror Y oraliqdan iborat bo`lsa, u holda funksiya X oraliqda uzluksiz bo`ladi.
Isbot. f(x) funksiya X oraliqda o`suvchi bo`lsin. Faraz qilaylik funksiya biror X nuqtada uzilishga ega bo`lsin. U holda yuqoridagi teoremaga binoan f( -0) +0) bo`lib, (f( -0),f( +0)) {f( )} to`plamdagi sonlarning hech biri funksiyaning qiymati bo`lmaydi, ya`ni funksiya qiymatlari Y oraliqdan iborat bo`lmaydi. Teorema isbotlandi.



Yüklə 424,5 Kb.

Dostları ilə paylaş:
  1   2   3   4   5   6




Verilənlər bazası müəlliflik hüququ ilə müdafiə olunur ©azkurs.org 2024
rəhbərliyinə müraciət

gir | qeydiyyatdan keç
    Ana səhifə


yükləyin