part of the market share for natural product-based insecticides
according to the Organic Materials Review Institute (OMRI).
132
Unfortunately, it is not within the scope of this review to discuss
every essential oil currently being utilized for crop protection nor
is it possible to discuss the barrage of various oil combinations. How-
ever, rosemary oil, thyme oil, and eugenol and/or clove oil are com-
monly used and are briefly discussed below. Many of these oil-based
products also possess herbicidal activity (see Section 2.1.4).
3.9.1. Rosemary oil
Rosemary oil is obtained by steam distillation of the fresh flow-
ering tops of both the wild-growing and cultivated shrub Rosmari-
nus officinalis, which is a species native to the Mediterranean
region.
133
As with most essential oils, they are mixtures of numer-
ous volatile organic compounds including primarily terpenoids and
small aromatics. Rosemary oil consists primarily of 25% 1,8-cine-
ole, borneol, camphor and high amounts of monoterpenoids
(
Fig. 3.8
). Many of these constituents possess insecticidal activ-
ity.
134
Rosemary products are recommended for the control of
aphids, beetles, whiteflies, spider mites, thrips, and caterpillar lar-
vae, among other. Products available commercially include multi-
ple products from EcoSMART Technologies one of which is a
mixture of 10% rosemary oil and 2% peppermint oil called Ecotrol
Ò
EC Insecticide/Miticide. Rosemary oil is exempt from EPA registra-
tion and is therefore available for use in organic farming.
3.9.2. Thyme oil
Thyme oil is obtained by steam distillation of fresh or partially
dried aerial parts of flowering wild or cultivated Thymus vulgaris or
other species from the same genera. It is also native to the Mediter-
ranean region and cultivated in regions mentioned above for rose-
mary. The oil consists of thymol and carvacrol as the main
constituents together with numerous additional monoterpe-
noids.
133
Thyme oil products are exempt from EPA registration
and are therefore available for broad-spectrum insect control in
organic farming. Commercial products containing thyme oil
include Proud 3 from BioHumaNetics, Inc., Organic Yard Insect
Killer from Green Light, among others.
3.9.3. Clove oil
Clove oil is obtained via water distillation from dried flower
buds of the tropical tree Syzygium aromaticum (syn. Eugenia caryo-
phyllata), and it is not uncommon for the stems and leaves to also
be utilized. Clove oil is usually over 92% eugenol and also contains
eugenyl acetate and b-caryophyllene.
133
Eugenol is a fast acting
contact insecticide that is effective on a wide variety of household
arthropod pests and is also used on some ornamental plant pests
such as armyworms, thrips, aphids and mites. Commercial prod-
ucts containing clove oil include Organic Yard Insect Killer from
Green Light and Biooganic Lawn and Garden Spray from Bioganic
Brand.
3.9.4. Capsaicin oil and preparations
Capsaicin-based products are obtained from the genus Capsicum
and are often derived from hot chili peppers (Capsicum frutescens,
Mill.). Resin products containing approximately 3% capsaicin are
obtained by grinding dry, ripe peppers and extracting the powder.
It is unclear whether the insect pest control effects of capsaicin
products are due to its insecticidal effects or it repellency, as both
are likely to contribute. Products containing capsaicin include Hot
Pepper Wax Insect Repellent from Hot Pepper Wax, Inc. and Hot
Pepper Wax from Bonide.
4. Natural products for plant pathogen management
Natural products for plant pathogen management have been
the topic of or included in several previous reviews.
135–137
Many
natural compounds and preparations have been described with
activity against bacterial or fungal plant pathogens. Indeed, plants
protect themselves from microbial attacks with both constitutive
antimicrobials and compounds induced by the attacking pathogen
(phytoalexins). Phytoalexins have not been directly exploited as
fungicides, but natural products have been used to indirectly
protect plants from pathogens by induction of systemic acquired
resistance (SAR), including phytoalexins. These SAR-inducing com-
pounds and preparations are termed elicitors. Since such activity is
indirect, the pathogen cannot evolve resistance directly to the elic-
itor, making such products excellent candidates for integrated dis-
ease management. Elicitors are generally not as effective as good
chemical fungicides partly because the timing of elicitor applica-
tion and threat to the crop by a pathogen is crucial, but difficult
to maximize.
4.1. Organic agriculture
A range of microbially-derived products are available for man-
agement of plant diseases in organic agriculture. However, several
purely natural fungicides (e.g., blastocidin-S) are used only in con-
ventional cropping systems.
4.1.1. Plant essential oils
Several plant essential oils are marketed as fungicides for
organic farmers. These include jojoba (Simmondsia californica) oil
(e.g., E-Rase
TM
), rosemary (Rosemarinus officianalis) oil (Sporan
TM
),
thyme ( T. vulgaris) oil (Promax
TM
), clarified hydrophobic extract
of neem (A. indica) oil (Trilogy
TM
), and cottonseed (Gossypium hirsu-
tum) oil with garlic (Allium sativum) extract (31% and 23%, respec-
tively in GC-3
TM
). Few scientific papers deal with these products and
the actual active components, and their modes of action against
individual plant pathogens are largely unknown.
4.1.2. Extract of giant knotweed
An extract of the giant knotweed (Reynourtria sachalinensis)
(Milsana
TM
) is used in Europe for the control of a wide spectrum
of both fungal and bacterial plant diseases in both organic and
non-organic agriculture. It is especially effective against powdery
mildews and is used primarily on glasshouse and ornamental
plants. It is sold as Regalia
TM
by Marrone Organic Innovations in
the US for both food and non-food plants, but the current formula-
tion is not yet accepted for organic agriculture. It apparently acts
indirectly by induction of plant defenses.
138,139
Down-regulating
chalcone synthase, a key enzyme of the flavonoid pathway,
resulted in the nearly complete suppression of induced resistance
by this product.
140
The main active elicitor compound(s) of this
preparation are physcion and emodin,
141
a known antimicrobial
compound.
142
While most of the activity seems to be associated
with physcion, the photodynamic compound emodin can also gen-
erate reactive oxygen species in the presence of sunlight
143
There-
fore, emodin-dependent oxidative stress may also induce SAR to
plant pathogens.
144
4.2. Conventional cropping system
4.2.1. Antibiotics from actinomycetes
A relatively large number of fermentation secondary products
from actinomycetes, mostly Streptomyces spp., are fungicidal. Some
of them have been commercialized and used extensively as agri-
cultural fungicides in Japan, and to a lesser extent in other parts
4030
F. E. Dayan et al. / Bioorg. Med. Chem. 17 (2009) 4022–4034
of the world. Since these compounds are considered antibiotics,
they are not accepted for organic farming in the U.S.-except for
streptomycin for fire blight control in apples and pears (
http://
www.omri.org/pages2-3.pdf
). This is paradoxical since streptomy-
cin is an important pharmaceutical and, to our knowledge, none of
the others mentioned below are used as human pharmaceuticals.
Blasticidin-S (
Fig. 4.1
) (Bla-S
TM
) from the soil actinomycete,
Streptomyces griseochromogenes is used as a curative treatment
against rice blast disease in eastern Asia.
145
It inhibits protein syn-
thesis in target pathogens. Some blasticidin-S-resistant microbes
detoxify the fungicide by deamination. It is active on a wide range
of pathogens, but can cause damage to some crops.
Kasugamycin (
Fig. 4.1
) (Kasugamin
TM
, etc.) from Streptomyces
kasugaensis has been used for rice blast and other crop diseases
in Japan. It interferes with tRNA/ribosome interactions and inhibits
protein synthesis.
146
Mildiomycin (
Fig. 4.1
) (Mildiomycin
TM
) from
the soil actinomycete Streptoverticillium rimofaciens is used primar-
ily in Japan for control of powdery mildews. Its mode of action is
thought to be inhibition of protein synthesis by targeting pepti-
dyl-transferase.
147
Natamycin (
Fig. 4.1
) (Delvolan
TM
) from Strepto-
myces chattanoogensis is used primarily on ornamentals. It has a
novel mode of action by binding ergosterol, an integral component
of fungal cell membranes, thereby causing membrane dysfunc-
tion.
148
Streptomyces rimosus produces oxytetracycline (
Fig. 4.1
)
Figure 4.1. Structures of the natural fungicides and bactericides mentioned in the text.
F. E. Dayan et al. / Bioorg. Med. Chem. 17 (2009) 4022–4034
4031
(e.g., MyShield) that is used for control of bacterial diseases. Again,
it inhibits protein synthesis by disrupting t-RNA/ribosome interac-
tions
149
and has pharmaceutical uses.
The polyoxins (polyoxin B and polyoxorim—
Fig. 4.1
) from Strep-
tomyces cacoai are also used as agricultural fungicides. Trade
names include Polyoxin Z and Endorse for polyoxorim and Polyox-
in AL for polyoxin B. These compounds may act through inhibition
of fungal cell wall biosynthesis.
150
In addition to being used as a pharmaceutical, streptomycin
(
Fig. 4.1
) (from Streptomyces griseus) is used for bacterial plant dis-
eases. It acts by interference with prokaryotic protein synthesis by
binding the 30S ribosomal subunit.
151
As an agricultural fungicide,
it has numerous trade names (e.g., Plantomycin, Agrimycin, Agrept,
AAstrepto, and BacMaster) Resistance to it is widespread. It some-
times causes chlorosis to plants by interference with plastid pro-
tein synthesis.
152
Finally, validamycin (
Fig. 4.1
) (e.g., Validacin
TM
, Valimun
TM
,
Sheathmar
TM
, Mycin
TM
) from S. hygroscopicus is used for Rhizoctonia
spp. control on a variety of crops. It inhibits trehalase,
153
an
enzyme necessary to fungi for generation of glucose to growing
hyphal tips. Knocking out this enzyme stops growth, so the com-
pound is essentially fungistatic.
4.2.2. Chitin components
Chitin (N-acetylchitosan) and chitosan (poly-
D
-glucosamine)
are found in fungal cell walls and arthropod exoskeletons. Chitosan
is an effective elicitor of SAR to pathogens, including phytoalexin
synthesis, in plants.
154
Presumably, plants have evolved a recep-
tor/signally system to sense fungal pathogens in order to initiate
chemical warfare with them. Preparations of chitin/chitosan from
both crustacean exoskeletons (e.g., Elexa
TM
, a 4% aqueous suspen-
sion)
155
and dried yeast (Saccharomyces cerevisisae) hyrdrolysate
(KeyPlex
TM
) are sold as fungicides. The latter product is combined
with other ingredients. How much of the fungicidal effect of chito-
san is due to induction of resistance mechanisms of the crop is dif-
ficult to separate from possible direct fungicidal effects as chitosan
possess some direct fungicidal activity.
156
4.2.3. Cinnamaldehyde
Cinnamaldehyde (
Fig. 4.1
) is found in several plants, but seeds
of the weed Cassia obtusifolia are especially rich in it. It is usually
synthesized chemically for use as an agricultural fungicide (e.g.,
Vertigo
TM
, Cinnacure
TM
) on a variety of crops. Its mode of action is
apparently though inhibition of synthesis of the fungal cell wall
component chitin.
157,158
4.2.4. Harpin proteins
The plant pathogen Erwinia amylovora that causes fire blight in
apples and pears produces a 40 kD protein termed ‘harpin protein’
that induces SAR in plants.
159,160
It is produced by heterologous
expression of the gene for this protein from E. amylovora in Esche-
richia coli. Since it induces SAR, it decreases susceptibility to a
broad range of fungal, bacterial, and viral diseases, as well as to
nematodes. Harpin protein is sold as a 3% formulation (Messen-
ger
TM
). Harpin
a
b
(ProAct
TM
) is a protein consisting of four fragments
of other harpin proteins. It is also an elicitor of SAR.
4.2.5. Laminarine
This product (Iodus
TM
) is a preparation of the storage polysac-
charide (a b-1,3-glucan with some b-1,6-linked branches) of the
brown alga Laminaria digitata. It is an elicitor of SAR and not a true
fungicide.
161
4.2.6. Extract of Macleaya cordata
An extract of the plant M. cordata is sold as a fungicide (Qwel
TM
).
Its greenhouse activity is comparable to synthetic fungicides.
162
The preparation contains numerous alkaloids, but it may be acting
through induction of SAR.
4.2.7. Strobilurins
Strobilurin and the related antifungal oudemansin (
Fig. 4.1
) are
produced by basidiomycetes that colonize dead wood. These com-
pounds, which provide an advantage over competing fungi, have
served as lead structures for commercialized synthetic analogs
such as azoxystrobin and kresoxym-methyl (
Fig. 4.1
). These com-
pounds inhibit mitochondrial respiration by blocking the ubiqui-
none receptor.
163
Resistance to this class of fungicides has
already evolved.
164
5. Conclusions
Conventional pest management has been significantly influ-
enced by bioactive natural products that are used directly, or in a
derived form, as pesticides. Biobased pesticides are commonly
used as alternatives to synthetic compounds in organic agriculture.
While some of these insecticidal and fungicidal compounds have
transferred successfully in the more conventional crop production
systems, good natural herbicides have been lacking. The only nat-
ural herbicide available for large-scale cropping system is glufosi-
nate (a metabolite of bialaphos), although it is not accepted by
organic farmers. However, glufosinate and all of the commercially
available natural herbicides (e.g., corn gluten meal, acetic acid,
essential oils) are non-selective and require careful application in
order to preserve the crop of interest. Under particular cropping
systems, allelopathy may be able to contribute to weed control.
These past successes and the current public’s concern over the
impact of synthetic pesticides on the environment ensures a con-
tinued, if not an increased, interest in searching nature for environ-
mentally friendlier pest management tools.
References and notes
1. House Resolution-1627 Food Quality Protection Act (FQPA) of 1996.
http://
www.epa.gov/pesticides/regulating/laws/fqpa/
.
2. Dayan, F. E.; Romagni, J. G.; Tellez, M. R.; Rimando, A. M.; Duke, S. O. Pestic.
Outlook 1999, 5, 185.
3. Copping, L. G.; Duke, S. O. Pest Manage. Sci. 2007, 63, 524.
4. USEPA.
http://www.epa.gov/oecaagct/
torg.html#Guidance%20for%20Labeling
, accessed August, 2008.
5. International
Federation
of
Organic
Agriculture
Movements.
http://
www.ifoam.org/organic_facts/harmonization/index.html
,
accessed
August,
2008.
6. Ibn, H.; Tyrwhitt, T.; Orpheus, Peri lithôn De lapidibus, poema Orpheo a
quibusdam adscriptum. J. Nichols; apud bibliopolas, Payne, White, et Elmsly:
Londini, 1781.
7. Yang, R. Z.; Tang, C.-S. Econ. Bot. 1988, 42, 376.
8. Lipkus, A. H.; Yuan, Q.; Lucas, K. A.; Funk, S. A.; Bartelt, W. F., III; Schenck, R. J.;
Trippe, A. J. J. Org. Chem. 2008, 73, 4443.
9. Henkel, T.; Brunne, R. M.; Muller, H.; Reichel, F. Angew. Chem., Int. Ed. 1999, 38,
643.
10. Harvey, A. L. Curr. Opin. Chem. Biol. 2007, 11, 480.
11. Costantino, L.; Barlocco, D. Curr. Med. Chem. 2006, 13, 65.
12. Koch, M. A.; Schuffenhauer, A.; Scheck, M.; Wetzel, S.; Casaulta, M.; Odermatt,
A.; Ertl, P.; Waldmann, H. Proc. Natl. Acad. Sci. U.S.A. 2005, 102, 17272.
13. Ertl, P.; Roggo, S.; Schuffenhauer, A. J. Chem. Inf. Model. 2008, 48, 68.
14. Lopez, S. N.; Ramallo, I. A.; Sierra, M. G.; Zacchino, S. A.; Furlan, R. L. E. Proc.
Natl. Acad. Sci. U.S.A. 2007, 104, 441.
15. Quinn, R. J.; Carroll, A. R.; Pham, N. B.; Baron, P.; Palframan, M. E.; Suraweera,
L.; Pierens, G. K.; Muresan, S. J. Nat. Prod. 2008, 71, 464.
16. Dayan, F. E.; Romagni, J. G.; Duke, S. O. J. Chem. Ecol. 2000, 26, 2079.
17. Duke, S. O.; Rimando, A. M.; Schrader, K. K.; Cantrell, C.; Meepagala, K. M.;
Wedge, D. E.; Tabanca, N.; Dayan, F. E. In Selected Topics of Natural Products;
Ikan, R., Ed.; World Scientific Publishing, 2008; pp 209–251.
18. Gimsing, A. L.; Sorensen, J. C.; Tovgaard, L.; Jorgensen, A. M. F.; Hansen, H. C. B.
Environ. Toxicol. Chem. 2006, 25, 2038.
19. Senseman, S. A. Herbicide Handbook, 9th ed.; Weed Science Society of America:
Lawrence, KS, 2007. p 458.
20. Anonymous
Organic
farming.
http://www.epa.gov/pesticides/regulating/
laws/fqpa/
.
21. Lotter, D. W. J. Sustain. Agric. 2003, 21, 59.
22. Quarles, W. Common Sense Pest Control Quart. 1999, 4.
4032
F. E. Dayan et al. / Bioorg. Med. Chem. 17 (2009) 4022–4034
23. McDade, M. C.; Christians, N. E. Am. J. Altern. Agric. 2000, 15, 189.
24. Christians, N. E. U.S. Patent No. 5,030,268, 1990.
25. Gough, R. E.; Carlstrom, R. Hortscience 1999, 34, 269.
26. Liu, D. L.; Christians, N. E. Hortscience 1997, 32, 243.
27. Liu, D. L.; Christians, N. E. J. Plant Growth Regul. 1994, 13, 227.
28. Unruh, J. B.; Christians, N. E.; Horner, H. T. Crop Sci. 1997, 37, 208.
29. Liu, D. L.; Christians, N. E. J. Plant Growth Regul. 1996, 15, 13.
30. Young, S. L. Weed Technol. 2004, 18, 580.
31. Malkomes, H.-P. J. Plant Dis. Prot. 2005, 112, 457.
32. Spencer, D. F.; Ksander, G. G. J. Aquat. Plant Manage. 1999, 37, 67.
33. Anderson, L. W. J. J. Aquat. Plant Manage. 2007, 45, 100.
34. Malkomes, H.-P. Umweltwiss. Schadst. Forsch. 2006, 18, 13.
35. Poignant, P. C.R. Acad. Sci. 1954, 239, 822.
36. Anonymous Stockman Grass Farmer 2002, July, 1.
37. Coleman, R.; Penner, D. Weed Technol. 2006, 20, 410.
38. Fausey, J. C. Horttechnology 2003, 13, 35.
39. Lederer, B.; Fujimori, T.; Tsujino, Y.; Wakabayashi, K.; Böger, P. Pestic. Biochem.
Physiol. 2004, 80, 151.
40. Fukuda, M. Y.; Tsujino, Y.; Fujimori, T.; Wakabayashi, K.; Böger, P. Pestic.
Biochem. Physiol. 2004, 80, 143.
41. Coleman, R.; Penner, D. Weed Technol. 2008, 22, 38.
42. Scarfato, P.; Avallone, E.; Lannelli, P.; De Feo, V.; Acierno, D. J. Appl. Polym. Sci.
2007, 105, 3568.
43. Tworkoski, T. Weed Sci. 2002, 50, 425.
44. Bouverat-Bernier, J. P. Herb. Gallic 1992, 2, 1.
45. Bessette, S. M. WO 2000051436, 2000, 24pp.
46. Charlesworth, J. H. GB 228805 1924.
47. Zamureenko, V. A.; Klyuev, N. A.; Grandberg, I. I.; Dmitriev, L. B.; Esvandzhiya,
G. A. Izvest. Timiryaz. Sel’skokh. Akad. 1981, 2, 167.
48. Clay, D. V.; Dixon, F. L.; Willoughby, I. Forestry 2005, 78, 1.
49. Mondello, L.; Verzera, A.; Bonaccorsi, I.; Chowdhury, J. U.; Yusef, M.; Begum, J.
J. Essent. Oil Res. 1998, 10, 185.
50. Batish, D. R.; Singh, H. P.; Setia, N.; Kohli, R. K.; Kaur, S.; Yadav, S. S. Agron.
Sustain. Dev. 2007, 27, 171.
51. Dhanapal, G. N.; Struik, P. C.; Timmermans, P. C. J. M.; ter Borg, S. J. J. Sustain.
Agric. 1998, 11, 5.
52. Vasilakoglu, I.; Dhima, K.; Wogiatzi, E.; Eleftherohorinos, I.; Lithourgidis, A.
Allelo. J. 2007, 20, 297.
53. Rohlfsen, W. G. U.S. 2008125321, U.S. 2006-604081, 2008.
54. Christoph, F.; Kubeczka, K. H.; Stahl-Biskup, E. J. Essent. Oil Res. 1999, 11, 705.
55. Douglas, M. H.; van Klink, J. W.; Smallfield, B. M.; Perry, N. B.; Anderson, R. E.;
Johnstone, P.; Weavers, R. T. Phytochemistry 2004, 65, 1255.
56. Hellyer, R. O. Aust. J. Chem. 1968, 21, 2825.
57. Gray, R. A.; Tseng, C. K.; Rusay, R. J. U.S. Patent 4,227,919, 1980.
58. Knudsen, C. G.; Lee, D. L.; Michaely, W. J.; Chin, H.-L.; Nguyen, N. H.; Rusay, R.
J.; Cromartie, T. H.; Gray, R.; Lake, B. H.; Fraser, T. E. M.; Cartwright, D. In
Allelopathy in Ecological Agriculture and Forestry; Narwal, S. S., Ed.; Kluwer
Academic Publishers: The Netherlands, 2000; pp 101–111.
59. Dayan, F. E.; Duke, S. O.; Sauldubois, A.; Singh, N.; McCurdy, C.; Cantrell, C. L.
Phytochemistry 2007, 68, 2004.
60. Lee, D. L.; Prisbylla, M. P.; Cromartie, T. H.; Dagarin, D. P.; Howard, S. W.;
Provan, W. M.; Ellis, M. K.; Fraser, T.; Mutter, L. C. Weed Sci. 1997, 45, 601.
61. Duke, S. O.; Abbas, H. K.; Amagasa, T.; Tanaka, T., Phytotoxins of microbial origin
with potential for use as herbicides. SCI: 1996; pp 82–113.
62. Lydon, J.; Duke, S. O. In Plant Amino Acids; Singh, B. K., Ed.; Marcel Dekker:
New York, NY, 1999; pp 445–464.
63. Duke, S. O. Pest Manage. Sci. 2005, 61, 211.
64. Hoy, P. R.; Stickney, J. S. Wisconsin State Hortic. Soc. 1881, 166.
65. Molish, H. Der Einfluss einer Pflanze auf die andera-Allelopathie; Fischer: Jena,
1937.
66. Rice, E. L. Allelopathy, 2nd ed.; Academic Press: New York, 1984.
67. Belz, R. G. Pest Manage. Sci. 2007, 63, 308.
68. Macías, F. A.; Molinillo, J. M. G.; Varela, R. M.; Galindo, J. C. G. Pest Manage. Sci.
2007, 63, 327.
69. Olofsdotter, M.; Jensen, L. B.; Courtois, B. Plant Breeding 2002, 121, 1.
70. Kong, C.; Xu, X.; Hu, F.; Chen, X.; Ling, B.; Tan, Z. Chin. Sci. Bull. 2002, 47,
839.
71. Gealy, D. R.; Wailes, E. J.; Estorninos, L. E., Jr.; Chavez, R. S. C. Weed Sci. 2003,
51, 601.
72. Kato-Noguchi, H. J. Plant Physiol. 2004, 161, 271.
73. Kato-Noguchi, H.; Ino, I. Plant Prod. Sci. 2004, 7, 189.
74. Kato-Noguchi, H.; Ino, T. Phytochemistry 2003, 63, 551.
75. Netzly, D. H.; Riopel, J. L.; Ejeta, G.; Butler, L. G. Weed Sci. 1988, 36, 441.
76. Fate, G. D.; Lynn, D. G. J. Am. Chem. Soc. 1996, 118, 11369.
77. Rimando, A. M.; Dayan, F. E.; Czarnota, M. A.; Weston, L. A.; Duke, S. O. J. Nat.
Prod. 1998, 61, 927.
78. Kagan, I. A.; Rimando, A. M.; Dayan, F. E. J. Agric. Food Chem. 2003, 51, 7589.
79. Nimbal, C. I.; Pedersen, J. F.; Yerkes, C. N.; Weston, L. A.; Weller, S. C. J. Agric.
Food Chem. 1996, 44, 1343.
80. Netzly, D. H.; Butler, L. G. Crop Sci. 1986, 26, 775.
81. Einhellig, F. A.; Souza, I. F. J. Chem. Ecol. 1992, 18, 1.
82. de Souza, C. N.; de Souza, I. F.; Pasqual, M. Ciênc. Agrotecnol. 1999, 23, 331.
83. de Almeida Barbosa, L. C.; Ferreira, M. L.; Demuner, A. J.; da Silva, A. A.; de
Cassia Pereira, R. Quim Nova 2001, 24, 751.
84. Dayan, F. E. Planta 2006, 224, 339.
85. Yang, X.; Owens, T. G.; Scheffler, B. E.; Weston, L. A. J. Chem. Ecol. 2004, 30, 199.
86. Rasmussen, J. A.; Hejl, A. M.; Einhellig, F. A.; Thomas, J. A. J. Chem. Ecol. 1992,
18, 197.
87. Einhellig, F. A.; Rasmussen, J. A.; Hejl, A. M.; Souza, I. F. J. Chem. Ecol. 1993, 19,
369.
88. Meazza, G.; Scheffler, B. E.; Tellez, M. R.; Rimando, A. M.; Nanayakkara, N. P.
D.; Khan, I. A.; Abourashed, E. A.; Romagni, J. G.; Duke, S. O.; Dayan, F. E.
Phytochemistry 2002, 59, 281.
89. Hejl, A. M.; Koster, K. L. J. Chem. Ecol. 2004, 30, 2181.
90. Weston, L. A.; Czarnota, M. A. J. Crop Prod. 2001, 4, 363.
91. Macías, F. A.; Chinchilla, N.; Varela, R. M.; Marin, D.; Molinillo, J. M. G. J. Agric.
Food Chem. 2005, 53, 4373.
92. Cambier, V.; Hance, T.; de-Hoffman, E. Phytochem. Anal. 1999, 10, 119.
93. Macías, F. A.; Oliveros-Bastida, A.; Marin, A.; Castellano, D.; Simonet, A.;
Molinillo, J. M. G. J. Agric. Food Chem. 2004, 52, 6402.
94. Fomsgaard, I. S.; Mortensen, A. G.; Carlsen, S. C. K. Chemosphere 2004, 54,
1025.
95. First growth in global agrochemical market for a decade’, Agrow 466, February
18, 2005.
96. Nauen, R. Pest Manage. Sci. 2006, 62, 690.
97. Isman, M. B. Annu. Rev. Entomol. 2006, 51, 45.
98. Dictionary of Natural Products on DVD, CRC Press, Taylor and Francis Group,
Version 17:1, June 2008.
99. Sarfraz, M.; Dosdall, L. M.; Keddie, B. A. Outlooks Pest Manage. 2005, 16, 78.
100. Sparks, T. C.; Crouse, G. D.; Durst, G. Pest Manage. Sci. 2001, 57, 896.
101. Snyder, D. E.; Meyer, J.; Zimmermann, A. G.; Qiao, M.; Gissendanner, S. J.;
Cruthers, L. R.; Slone, R. L.; Young, D. R. Vet. Parasitol. 2007, 150, 345.
102. Porteus, D. J.; Raines, J. R.; Gantz, R. L. In Proceedings of Beltwide Cotton
Conferences; Dugger, P., Richter, D., Eds.; National Cotton Council of America:
Memphis, TN, 1996; pp 875–877.
103. Salgado, V. L. Down Earth 1997, 52, 35.
104. Chang, C. P.; Plapp, F. W., Jr. J. Econ. Entomol. 1983, 76, 1206.
105. Clark, J. M. Pestic. Biochem. Physiol. 1997, 57, 235.
106. Shepard, H. H. The Chemistry and Action of Insecticides; McGraw-Hill: New
York, 1951.
107. Caboni, P.; Sherer, T. B.; Zhang, N.; Taylor, G.; Na, H. M.; Greenamyre, J. T.;
Casida, J. E. Chem. Res. Toxicol. 2004, 17, 1540.
108. Fang, N.; Casida, J. E. Proc. Natl. Acad. Sci. U.S.A. 1998, 95, 3380.
109. Fang, N.; Casida, J. E. J. Agric. Food Chem. 1999, 47, 2130.
110. Hollingworth, R.; Ahmmadsahib, K.; Gedelhak, G.; McLaughlin, J. Biochem. Soc.
Trans. 1994, 22, 230.
111. Chauvin, C.; De Oliveira, F.; Ronot, X.; Mousseau, M.; Leverve, X.; Fontaine, E. J.
Biol. Chem. 2001, 276, 41394.
112. Ivermectin and Abamectin; Campbell, W. C., Ed.; Springer-Verlag: New York,
1989.
113. Kornis, G. I. In Agrochemicals from Natural Products; Godfrey, C. R. A., Ed.;
Marcel Dekker: New York, 1995; p 215.
114. Hayes, W. J., Laws, E. R., Eds.Handbook of Pesticide Toxicology, Classes of
Pesticides; Academic Press: NY, 1990; Vol. 3,.
115. Fisher, M. H. Am. Chem. Soc. Symp. Ser. 1993, 524, 169.
116. Jansson, R. K.; Dybas, R. A. Avermectins: Biochemical mode of action
biological activity and agricultural importance. In Insecticides with Novel
Modes of Action: Mechanisms and Application; Ishaaya, I., Ed.; Springer-Verlag:
New York, NY, 1996.
117. Mishima, M. Milbemycin: a family of macrolide antibiotics with insecticidal
activity. In IUPAC Pesticide Chemistry; Miyamoto, J., Kearney, P. C., Eds.;
Pergamon Press: Oxford, UK, 1983; Vol. 2, pp 129–134.
118. Takiguchi, Y.; Mishima, H.; Okuda, M.; Terao, M.; Aoki, A.; Fukuda, R. J.
Antibiot. 1980, 33, 1120.
119. Arena, J. P.; Liu, K. K.; Paress, P. S.; Frazier, E. G.; Cully, D. F.; Mrozik, H.;
Schaeffer, J. J. Parasitol. 1995, 81, 286.
120. Pepper, B. E.; Carruth, L. A. J. Econ. Entomol. 1945, 38, 59.
121. Crombie, L. In Naturally Occurring Insecticides; Jacobson, M., Crosby, D. G., Eds.;
Marcel Dekker: New York, 1971; p 198.
122. Rogers, E. F.; Koniuszy, F. R.; Shavel, J., Jr.; Folkers, K. J. Am. Chem. Soc. 1948, 70,
3086.
123. Casida, J. E.; Pessah, I. N.; Seifert, J.; Waterhouse, A. L. In Naturally Occurring
Pesticides; Greenlaugh, E., Roberts, T. R., Eds.; Blackwell Scientific Publishers:
Oxford, UK, 1987; pp 177–182.
124. Barton, D. H. R.; Jeger, O.; Prelog, V.; Woodward, R. B. Experientia 1954, 10, 81–
90.
125. Crosby, D. G. Minor insecticides of plant origin. In Naturally Occurring
Insecticides; Jacobsen, M., Crosby, D. G., Eds.; Marcel Dekker: New York, NY,
1971; pp 177–239.
126. Catterall, W. A. Ann. Rev. Pharmacol. Toxicol. 1980, 125, 987.
127. Schmelz, I. In Naturally Occurring Insecticides; Jacobson, M., Crosby, D. G., Eds.;
Marcel Dekker: New York, 1971; p 99.
128. Yamamoto, I. Rev. Toxicol. 1998, 2, 61.
129. Ujv´ary, I. Nicotine and other insecticidal alkaloids. In Nicotinoid Insecticides
and the Nicotinic Acetylcholine Receptor; Yamamoto, I., Casida, J. E., Eds.;
Springer-Verlag: Tokyo, Japan, 1999; pp 29–69.
130. Brossi, A.; Pei, X.-F. Biological Activity of Unnatural Alkaloid Enantiomers. In
The Alkaloids: Chemistry and Pharmacology; Cordell, G. A., Ed.; Academic Press:
San Diego, CA, 1998; Vol. 50, pp 109–139.
131. Organic
Gardening–Natural Insecticides
Guide; H-150; L.M.
English;
Cooperative Extension Service, College of Agriculture and Home Economics,
New Mexico State University, July 2005.
F. E. Dayan et al. / Bioorg. Med. Chem. 17 (2009) 4022–4034
4033
132.
http://www.omri.org
; Approved Organic Pesticides, OMRI Listed and NY REG.
133. Essential Oils Analysis by Capillary Gas Chromatography and Carbon-13 NMR
Spectroscopy; 2002, John Wiley & Sons, Ltd., West Sussex, England, 2nd ed.,
Karl-Heinz Kubeczka.
134. Waliwitiya, R.; Isman, M. B.; Vernon, R. S.; Riseman, A. J. Econ. Entomol. 1998,
5, 1560.
135. Kim, B. S.; Hwang, B. K. J. Phytopathol. 2007, 155, 641.
136. Wedge, D. E.; Duke, S. O. Am. Chem. Soc. Symp. Ser. 2006, 927, 152.
137. D. Engelmeier, F. Hadacek, Antifunal natural products: assays and
applications, in: M. Rai, M.C. Carpenella (Eds.), Advances in Phytomedicine,
K. Ashok, Naturally Occurring Bioactive Compounds, Vol. 3, Elsevier B.V.,
2006, pp 423-467.
138. Daayf, F.; Schmitt, A.; Bélanger, R. R. Plant Physiol. 1997, 113, 719.
139. Carlin, C.; Faby, R.; Karjalainen, R.; Pommier, J. J.; Steffek, R. Act Horticult.
2004, 649, 237.
140. Fofana, B.; Benhamou, N.; McNally, D. J.; Labbé, C.; Séguin, A.; Bélanger, R. R.
Phytopathology 2005, 95, 114.
141. Jen, W.-Y.; Na, M.-K.; Song, G.-Y.; Lee, Y.-M.; Bai, K.-H. Korean Med. Database
2005, 13, 80.
142. Wu, Y.-W.; Ouyang, J.; Xiao, X.-H.; Gao, W.-Y. Chin. J. Chem. 2006, 24, 45.
143. Warner, W. G.; Vath, P.; Falvey, D. E. Free Radical Biol. Med. 2003, 34, 233.
144. Duke, S. O.; Wedge, D. E.; Cerdeira, A. L.; Mattalo, M. B. In Novel Biotechnologies
for Biocontrol Agent Enhancement and Management; Vurro, M., Gressel, J., Eds.;
Springer, 2007; pp 277–296.
145. Kimura, M.; Yamguchi, I. Pestic. Biochem. Physiol. 1996, 56, 243.
146. Tanaka, N.; Yamaguchi, H.; Umezawa, H. J. Biochem. 1966, 60, 429.
147. Om, Y.; Yamaguchi, I.; Misado, T. J. Pestic. Sci. 1984, 9, 317.
148. te Welscher, Y. M.; ten Napel, H. H.; Balague, M. M.; Souza, C. M.; Riezman, H.;
de Kruijff, B.; Breukink, E. J. Biol. Chem. 2008, 283, 6393.
149. Streltsov, S. A.; Kukhanova, M. K.; Krayevsky, A. A.; Beljavskaja, I. V.;
Victorova, L. S.; Gursky, G. V.; Treboganov, A. D.; Bottikh, B. P. Mol. Biol. Rep.
1974, 1, 391.
150. Isono, K.; Suzuki, S. Heterocycles 1979, 13, 333.
151. Traub, P.; Hosokawa, K.; Nomura, M. J. Mol. Biol. 1966, 19, 211.
152. Ingle, J. J. Plant Physiol. 1968, 43, 1850.
153. Kameda, Y.; Asano, N.; Yamaguchi, T. i.; Matsui, K. J. Antibiot. 1987, 40, 563.
154. Hahn, M. G. Annu. Rev. Phytopathol. 1996, 34, 387.
155. Sharathchandra, R. G.; Raj, S. N.; Shetty, N. P.; Amruthesh, K. N.; Shetty, H. S.
Crop Protect. 2004, 23, 881.
156. Hirano, S.; Nagao, N. Agric. Biol. Chem. 1989, 53, 3065.
157. Bang, K. H.; Lee, D. W.; Park, H. M.; Rhee, Y. H. Biosci. Biotechnol. Biochem.
2000, 64, 1061.
158. Kang, T. H.; Hwang, E. I.; Yun, B. S.; Park, K. D.; Kwon, B. M.; Shin, C. S.; Kim, S.
U. Biol. Pharm. Bull. 2007, 30, 598.
159. Wei, Z.-M.; Laby, R. J.; Zurnoff, C. H.; Bauer, D. W.; He, S. Y.; Collmer, A.; Beer,
S. V. Science 1992, 257, 85.
160. Dong, H.; Delaney, T. P.; Bauer, D. W.; Beer, S. V. Plant J. 1999, 20,
207.
161. Klarzynski, O.; Mery, A.; Joubert, J.-M. Phytoma 2002, 555, 59.
162. Newman, S. E.; Roll, M. J.; Harkrader, R. J. HortScience 1999, 34, 686.
163. Kraiczy, P.; Haase, U.; Gencic, S.; Flindt, S.; Anke, T.; Brandt, U.; von Jagow, G.
Eur. J. Biochem. 1996, 235, 54.
164. Ishii, H.; Fraaije, B. A.; Sugiyama, T.; Noguchi, K.; Nishimura, K.; Takeda, T.;
Amano, T.; Hollomon, D. W. Phytopathology 2001, 91, 1166.
4034
F. E. Dayan et al. / Bioorg. Med. Chem. 17 (2009) 4022–4034
Dostları ilə paylaş: |