y=tgx va y=ctgxfunksiyalarning hosilalari.
U shbu funksiyalarning hosilalarini topish uchun bo‘linmaning hosilasini topish qoidasidan foydalanamiz:
.
Xuddi shunga o‘xshash formulani ham keltirib chiqarish mumkin. 11-chizma
Trigonometrik funksiyalarning argumentlari x erkli o‘zgaruvchining u(x) funksiyasi bo‘lsa, u holda murakkab funksiyaning hosilasini topish qoidasiga ko‘ra quyidagi formulalar o‘rinli bo‘ladi:
(sinu)’=u’cosu, (cosu)’=-u’sinu, .
Misol.y=sinxfunksiya grafigi koordinatalar boshida Ox o‘qi bilan qanday burchak tashkil etadi?
Yechish.Buning uchun y=sinx funksiya grafigiga abssissasi x=0 bo‘lgan nuqtada o‘tkazilgan urinmaning burchak koeffitsientini topamiz: y’=cosx, demak f’(0)=cos0=1, burchak koeffitsienti tg=1, bundan izlanayotgan burchak /4 ga teng.
Misol.y=tgx funksiya grafigi koordinatalar boshida Ox o‘qi bilan qanday burchak tashkil etadi?
Yechish. Buning uchun y=tgx funksiya grafigiga abssissasi x=0 bo‘lgan nuqtada o‘tkazilgan urinmaning burchak koeffitsientini topamiz: y’=(tgx)’=sec2x, demak f’(0)=sec20=1, burchak koeffitsienti tg=1, bundan izlanayotgan burchak /4 ga teng.
Bu misollarda olingan natijalarni y=sinx va y=tgx funksiya grafiklarni chizishda e’tiborga olish kerak. Rasmlarda y=sinx va y=tgx funksiya grafiklari keltirilgan. Bu funksiya grafiklari koordinatalar boshida y=x to‘g‘ri chiziqqa urinadi.
(Mustaqil ta’lim uchun)
f(x) funksiyaning hosilasi faqat bu funksiya uzluksiz bo‘lgan nuqtalardagina mavjud bo‘lishi mumkinligini ko‘rsatamiz. Oldin ushbu teoremani qaraylik.
Teorema. Agar f(x) funksiya x nuqtada hosilaga ega bo‘lsa, u holda funksiya shu nuqtada uzluksiz bo‘ladi.
Isbot. Faraz qilaylik, f(x) funksiya x nuqtada hosilaga ega bo‘lsin. Demak, ushbu limit mavjud va f’(x) ga teng. Bizga agar funksiya chekli limitga ega bo‘lsa, uni limit va cheksiz kichik yig‘indisi ko‘rinishda ifodalash mumkinligi ma’lum ( ). Bizning holimizda limitga ega bo‘lgan funksiya deb funksiya orttirmasining argument orttirmasiga nisbatini olamiz. U holda ushbu tenglik o‘rinli bo‘ladi:
=f’(x)+, bu erda =(x) va =0. Bundan funksiya orttirmasi y=f(x+x)-f(x) ni quyidagi ko‘rinishda yozish mumkinligi kelib chiqadi:
y=f’(x)x+x (1)
Bu tenglikdan, agar x0 bo‘lsa, u holda y0 bo‘lishi kelib chiqadi. Bu esa f(x) funksiyaning x nuqtada uzluksizligini bildiradi. Teorema isbot bo‘ldi.
Bu teoremaning teskarisi o‘rinli emas, ya’ni funksiyaning nuqtada uzluksizligidan uning shu nuqtada hosilasi mavjudligi kelib chiqavermaydi. Masalan, y=|x| funksiya xning barcha qiymatlarida, xususan x=0 nuqtada uzluksiz, ammo x=0 nuqtada hosilaga ega emas. Bu funksiyaning x=0 nuqtadagi orttirmasi y=|x| bo‘lib, undan va nisbatning x0 dagi limiti mavjud emasligi kelib chiqadi, demak f(x)=|x| funksiya x=0 nuqtada hosilaga ega emas.