Oliy ta’lim, fan va innovatsiyalar vazirligi jizzах dаvlаt pеdаgоgikа universiteti


II-BOB. Boshlang’ich sinflarda matematik tushunchalarni o’rganish metodikasining usullari va shart-sharoitlari



Yüklə 168,5 Kb.
səhifə6/7
tarix08.06.2023
ölçüsü168,5 Kb.
#126686
1   2   3   4   5   6   7
I.Anorboyeva

II-BOB. Boshlang’ich sinflarda matematik tushunchalarni o’rganish metodikasining usullari va shart-sharoitlari

2.1. Boshlang’ich sinflarda algebra elementlarini umumlashtirish metodikasi

Boshlangich sinflarda arifmetik materiallarni o’rganib yakunlash algebraik materiallarni va matematika simvolikani o’rganish bilan umumlashtiriladi.


Boshlangich sinflarda o’quvchilar alfavitni matematik simvol tarzida qo’llay boshlaydilar. Shu orqali algebraik ifoda, tenglik, tengsizlik, tenglama to’g’risida boshlangich ma’lumot oladilar.
Bular to’g’risida ma’lumot berishning asosiy maqsadi arifmetik amallarning mohiyatini to’laroh ochish, shuningdek, keyingi sinflarda o’rganiladigan algebra fani uchun zaruriy tayyorgarlikni amalga oshirishidir.
Lekin, algebraik misollarni yechish algebra qoida va qonuniyatlarga asoslanmasdan arifmetik qoidalarga asoslanadi.
Masalan, 3a10 dan a qo’shiluvchini topish no’malum komponentni topish qoidasi bilan yechiladi.
Algebra materiallarini o’rganish algebraik ta’riflarga asoslanmaydi.
Ma’lumki, boshlangich sinf dasturining asosiy mazmuni natural sonlarni og’izaki va yozma nomerlash va ular ustida 4 arifmetik amallarni bajarish malakasini berishdir. Shuning uchun 1-sinfdan boshlab sonlarni o’qish va yozish malakalari bir necha bosqichga bo’lib o’qitiladi.
Masalan, 10 ichida og’zaki va yozma nomerlash, 100, 1000 va ko’p xonali sonlar to’g’risida ma’lumotlar beriladi. Sonli ifodalar deganda sonni biror amallar bilan birlashtirilgan yoki alohida yozilgan bir xonali, yoki ikki xonali yoki ko’p xonali sonlarni o’qish va yozishni tushunamiz.
Sonli ifodalar faqatgina arifmetik ifodalarda 4 amalni bajarish emas, geometrik masalalar, arifmetik va algebraik masalalarni yechishda bevosida qo’llaniladi. Masalan, uchburchakning perimetri, parallelopiped hajmi, miqdorlar to’g’risida sonli ifodalar qo’llaniladi. Uchburchakning tomonlari 3 sm, 4 sm, 5 sm bo’lsa, uning perimetri qancha?
3 sm  4 sm  5 sm  12 sm
Yig’indi so’zi bilan tanishtirishda uning ikki xil ma’noda ishlatilishini tushuntirish kerak.
1) ikki son orasiga "" ishora qo’yib yig’indini topish.
2) bitta son olib uni ikkita son yig’indisi shaklida turli ko’rinishda yozish:
M asalan, 1) 3  5 2) 9  
2-sinfda o’quvchilar "matematik ifoda" va "matematik ifodaning qiymatlari" tushunchalari bilan tanishadilar Avval 6:24 ifodaga o’xshash 2, 3 amalli ifodalarni misol keltiradi, keyin esa uning qiymati nechaga teng degan savolni qo’yadi, bu ifoda 7 ga teng va 7 yozilgan ifodaning qiymati ekanligi tushuntiriladi. Shundan keyin yana murakkab ifodalarga misol keltiradi, keyin o’quvchilarning o’ziga ifoda tuzing va uning qiymatini top degan topshiriqlar beradi.
Natijada (x-5)824 ifodadagi amallarni ayting va tenglamadagi x ni toping degan savolga javob beriladi.
3. Sonli ifodalar ustida ishlash metodikasi
Sonli ifodalarga:
a) har bir son sonli ifoda;
b) agar a va b sonli ifodalar bo’lsa, u holda ularning ayirmasi, yig’indisi, ko’paytmasi va bo’linmasi ham sonli ifoda bo’ladi.
Masalan, 30:54x6-2 sonli ifoda, bunda ko’rsatilgan amallar bajarilsa, bu son sonli ifodaning qiymati bo’ladi.
Eng sodda sonli ifodalarning yig’indisi va ayirmasi bilan o’quvchilar 1-sinfda tanishadilar. 32  5 ko’rinishdagi ifoda 3 va 2 qo’shiluvchi, 5 yig’indi yoki sonli ifodaning qiymati deb tushuntiriladi.
2-sinfdan asosan amallar tartibi qoidalari o’rganiladi. U murakkab ifodalar deb yuritiladi.
a) oldin qavslarsiz ifodalarda amallarning bajaralish tartibi qaraladi, bu holda sonlar ustida faqat 1- yoki 2- bosqich amallari bajariladi.
Masalan, 42-189, 63:9x4 ifodalardagi amallar yozilish tartibida bajarilishini biladilar, qiymatini hisoblab, uni o’qiy olishni tushunadilar.
b) shundan keyin 1-, 2- bosqich amallarini o’z ichiga olgan va qavslarsiz amallarni bajarishga o’tadi.
Masalan, 3-412, 40-15:3 misollardagi amallarning bajaralish tartibini o’rganadilar va hisoblaydilar. Bu yerda misol orqali amallarni bajarish to’g’risida muammoli vaziyat hosil qilinadi.
v) shundan keyin 25(40-15), (85-30):5 kabi qavslar katnashgan ifodalarni hisoblashga o’tadilar. hisoblash qoidasini keltirib chiqaradilar. O’tilgan materialni mustahkamlash maqsadida quyidagi topshiriqlar beriladi:
1. Amallarni bajarish tartibini tushuntiring va ifodalarning qiymatini toping; 6521 : 3
2. Ifodalarning qiymatini qulay usul bilan toping.
70-(20  6), 48  (30  4), (40  9)-(10  7)
3. Misollarda amallar to’g’ri bajarilganini yozing.
30  26:5  10 8x3  16:4  28
30  20:5  34 8x3  16:4  10
4. Qavslarni va amallarni shunday qo’yingki, tengliklar to’g’ri bo’lsin.
15 – 6x2  18 4x8-5  12
65-10x5  50 1224:49
Nihoyat ifodani almashtirish tushunchasi beriladi. Berilgan ifodani boshqa berilgan ifoda qiymatiga teng bo’lgan ifoda bilan almashtirish demakdir.
Masalan, 2  2  2  2x3 2670(206)70(2070)6906 96

4. Harfiy ifodalar
Matematika dasturiga binoan harfiy ifodalar 1-sinfdan boshlab kiritiladi. Bu yerda o’quvchilar
a  x  v x  s  d
ko’rinishdagi tenglamalarni yechishda va masalalarni tenglamalar yordamida yechishda, no’malum sonni belgilash uchun simvol sifatida ishlatiladigan x harfi bilan tanishadilar
2-sinfda x harf o’zgaruvchini belgilaydigan simvol sifatida kiritiladi. Bu boshlangich sinflardanoq o’zgaruvchi tushunchasini shakllantirish va bolalarni simvollarning matematik tilda ifoda qilish imkonini beradi.
Harfning o’zgaruvchini belgilash uchun simvol siftidagi ma’nosini ochib berishga tayyorgarlik ishi 2-sinfda o’quv yilining boshida qo’shish va ayirish amallarini takrorlash munosabati bilan o’tkaziladi. harflarning kiritilishi bilan bir vaqtda tayyorgarlik davrida, bolalar yangi terminlar: "matematik ifoda" va "matematik ifodaning qiymati" bilan ta’rifsiz tanishadilar.Bu davrda yig’indi va qoldiqni topishga doir bir xil mazmundagi sodda arifmetik masalalarni yechish bo’yicha ish olib boriladi.

5. Bilimlarni umumlashtirishda harfiy


simvolikadan foydalanish
O’quvchilar harfiy simvolikaning ma’nosini tushunib olganlaridan so’ng, harflarni ishlatishda shakllanayotgan bilimlarni umumlashtirish vositasi sifatida foydalanish mumkin.
1. Arifmetik amallarning xossalarini, arifmetik amallarning komponentlari hamma natijalari orasidagi bog’lanishni va h.k. larni harflar yordamida yozishda o’quvchilar aaaa yig’indisini 4xa ko’paytma bilan almashtiradi va bunday mulohaza yuritadilar: bu yerda qo’shiluvchilar bir xil (a), demak yig’indini ko’paytma bilan almashtirish mumkin, birinchi ko’paytuvchi a, ikkinchi ko’paytuvchi 4 soni bo’ladi, chunki qo’shiluvchilar 4 ta.
2. Arifmetik amallarning harflar yordamida yozilgan xossalarini, bog’lanishlarini, munosabatlarini va hokazolarni o’qish.
Masalan, "(a35)-a" ifodani o’qing va uning nimaga teng ekanligini toping. O’quvchilar quyidagicha mulohaza yuritadilar.
"a va 35 sonlarning yig’indisidan birinchi qo’shiluvchi a ni ayirish kerak, ikkinchi qo’shiluvchi 35 hosil bo’ladi"
Yozamiz: (a35)-a35
3. Arifmetik amallarning xossalarini bilish asosida ifodalarni ayniy almashtirish
Masalan, (5 b)x3  (5b)(5b)(5b)




    1. Yüklə 168,5 Kb.

      Dostları ilə paylaş:
1   2   3   4   5   6   7




Verilənlər bazası müəlliflik hüququ ilə müdafiə olunur ©azkurs.org 2024
rəhbərliyinə müraciət

gir | qeydiyyatdan keç
    Ana səhifə


yükləyin