On the properties of equally-weighted risk contributions portfolios



Yüklə 273,64 Kb.
Pdf görüntüsü
səhifə1/3
tarix28.11.2016
ölçüsü273,64 Kb.
#383
  1   2   3

On the properties of equally-weighted

risk contributions portfolios

Sébastien Maillard



Thierry Roncalli

Jérôme Teiletche



§

First version: June 2008  This version: May 2009

Abstract

Minimum variance and equally-weighted portfolios have recently prompted

great interest both from academic researchers and market practitioners, as their

construction does not rely on expected average returns and is therefore as-

sumed to be robust. In this paper, we consider a related approach, where the

risk contribution from each portfolio components is made equal, which maxi-

mizes diversication of risk (at least on an ex-ante basis). Roughly speaking,

the resulting portfolio is similar to a minimum variance portfolio subject to

a diversication constraint on the weights of its components. We derive the

theoretical properties of such a portfolio and show that its volatility is located

between those of minimum variance and equally-weighted portfolios. Empirical

applications conrm that ranking. All in all, equally-weighted risk contribu-

tions portfolios appear to be an attractive alternative to minimum variance

and equally-weighted portfolios and might be considered a good trade-o be-

tween those two approaches in terms of absolute level of risk, risk budgeting

and diversication.

Keywords: Asset allocation, risk contributions, minimum-variance, portfolio con-

struction, risk budgeting, portfolio diversication.

JEL classication: G11, C60.

The authors thank Eric Bouyé, Benjamin Bruder, Thierry Michel, Florent Pochon, Guillaume



Sabouret, Guillaume Weisang and, especially, Lionel Martellini and an anonymous referee for their

helpful comments and suggestions.

SGAM Alternative Investments, sebastien.maillard@sgam.com.



SGAM Alternative Investments and University of Evry, thierry.roncalli@sgam.com.

§

Lombard Odier and University of Paris Dauphine, jerome.teiletche@dauphine.fr.



1

1 Introduction

Optimal portfolio construction, the process of eciently allocating wealth among

asset classes and securities, has a longstanding history in the academic literature.

Over fty years ago, Markowitz [1952, 1956] formalized the problem in a mean-

variance framework where one assumes that the rational investor seeks to maximize

the expected return for a given volatility level. While powerful and elegant, this

solution is known to suer from serious drawbacks in its practical implementation.

First, optimal portfolios tend to be excessively concentrated in a limited subset of the

full set of assets or securities. Second, the mean-variance solution is overly sensitive to

the input parameters. Small changes in those parameters, most notably in expected

returns (Merton [1980]), can lead to signicant variations in the composition of the

portfolio.

Alternative methods to deal with these issues have been suggested in the lit-

erature, such as portfolio resampling (Michaud [1989]) or robust asset allocation

(Tütüncü and Koenig [2004]), but have their own disadvantages. On top of those

shortcomings, is the additional computational burden which is forced upon investors,

as they need to compute solutions across a large set of scenarios. Moreover, it can be

shown that these approaches can be restated as shrinkage estimator problems (Jo-

rion [1986]) and that their out-of-sample performance is not superior to traditional

ones (Scherer [2007a, 2007b]). Looking at the marketplace, it also appears that a

large fraction of investors prefers more heuristic solutions, which are computationally

simple to implement and are presumed robust as they do not depend on expected

returns.

Two well-known examples of such techniques are the minimum variance and the

equally-weighted portfolios. The rst one is a specic portfolio on the mean-variance

ecient frontier. Equity funds applying this principle have been launched in recent

years. This portfolio is easy to compute since the solution is unique. As the only

mean-variance ecient portfolio not incorporating information on the expected re-

turns as a criterion, it is also recognized as robust. However, minimum-variance

portfolios generally suer from the drawback of portfolio concentration. A simple

and natural way to resolve this issue is to attribute the same weight to all the assets

considered for inclusion in the portfolio. Equally weighted or "1/n" portfolios are

widely used in practice (Bernartzi and Thaler [2001], Windcli and Boyle [2004])

and they have been shown to be ecient out-of-sample (DeMiguel, Garlappi and

Uppal [2009]). In addition, if all assets have the same correlation coecient as well

as identical means and variances, the equally-weighted portfolio is the unique port-

folio on the ecient frontier. The drawback is that it can lead to a very limited

diversication of risks if individual risks are signicantly dierent.

In this paper, we analyze another heuristic approach, which constitutes a middle-

ground stemming between minimum variance and equally-weighted portfolios. The

2


idea is to equalize risk contributions from the dierent components of the portfolio

1

.



The risk contribution of a component i is the share of total portfolio risk attributable

to that component. It is computed as the product of the allocation in component

i

with its marginal risk contribution, the latter one being given by the change in



the total risk of the portfolio induced by an innitesimal increase in holdings of

component i. Dealing with risk contributions has become standard practice for

institutional investors, under the label of "risk budgeting". Risk budgeting is the

analysis of the portfolio in terms of risk contributions rather than in terms of portfolio

weights. Qian [2006] has shown that risk contributions are not solely a mere (ex-

ante) mathematical decomposition of risk, but that they have nancial signicance

as they can be deemed good predictors of the contribution of each position to (ex-

post) losses, especially for those of large magnitude. Equalizing risk contributions is

also known as a standard practice for multistrategy hedge funds like CTAs although

they generally ignore the eect of correlation among strategies (more precisely, they

are implicitly making assumptions about homogeneity of the correlation structure).

Investigating the out-of-sample risk-reward properties of equally-weighted risk

contributions (ERC) portfolios is interesting because they mimic the diversification

eect of equally-weighted portfolios while taking into account single and joint risk

contributions of the assets. In other words, no asset contributes more than its peers

to the total risk of the portfolio. The minimum-variance portfolio also equalizes

risk contributions, but only on a marginal basis. That is, for the minimum-variance

portfolio, a small increase in any asset will lead to the same increase in the total

risk of the portfolio (at least on an ex-ante basis). Except in special cases, the

total risk contributions of the various components will however be far from equal,

so that in practice the investor often concentrates its risk in a limited number of

positions, giving up the benet of diversification. It has been shown repeatedly

that the diversication of risks can improve returns (Fernholtz et al. [1998], Booth

and Fama [1992]). Another rationale for ERC portfolios is based on optimality

arguments, as Lindberg [2009] shows that the solution to Markowitz's continuous

time portfolio problem is given, when positive drift rates are considered in Brownian

motions governing stocks prices, by the equalization of quantities related to risk

contributions.

The ERC approach is not new and has been already exposed in some recent

articles (Neurich [2008], Qian [2005]). However, none of them is studying the global

theoretical issues linked to the approach pursued here. Note that the Most-Diversied

Portfolio (MDP) of Choueifaty and Coignard [2008] shares with the ERC portfolio

a similar philosophy based on diversication. But the two portfolios are generally

distinct, except when correlation coecient components is unique. We also discuss

1

We have restricted ourselves to the volatility of the portfolio as risk measure. The ERC principle



can be applied to other risk measures as well. Theoretically, it is only necessary that the risk

measure is linear-homogeneous in the weights, in order for the total risk of the portfolio to be fully

decomposed into components. Under some hypotheses, this is the case for Value at risk for instance

(Hallerback [2003]).

3


the optimality of the ERC portfolio within the scope of the Maximum Sharpe Ratio

(MSR) reinvestigated by Martellini [2008].

The structure of this paper is as follows. We rst dene ERC portfolios and

analyze their theoretical properties. We then compare the ERC with competing

approaches and provide empirical illustrations. We nally draw some conclusions.

2 Denition of ERC portfolios

2.1 Denition of marginal and total risk contributions

We consider a portfolio x = (x

1

, x


2

, ..., x


n

)

of n risky assets. Let σ



2

i

be the variance of



asset i, σ

ij

be the covariance between assets i and j and Σ be the covariance matrix.



Let σ (x) =

x Σx =



i

x

2



i

σ

2



i

+

i



j=i

x

i



x

j

σ



ij

be the risk of the portfolio.

Marginal risk contributions, ∂

x

i



σ (x)

, are dened as follows:

x

i



σ (x) =

∂ σ (x)


∂ x

i

=



x

i

σ



2

i

+



j=i

x

j



σ

ij

σ (x)



The adjective "marginal" qualies the fact that those quantities give the change in

volatility of the portfolio induced by a small increase in the weight of one component.

If one notes σ

i

(x) = x



i

× ∂


x

i

σ (x)



the (total) risk contribution of the i

th

asset, then



one obtains the following decomposition

1

:



σ (x) =

n

i=1



σ

i

(x)



Thus the risk of the portfolio can be seen as the sum of the total risk contributions

2

.



2.2 Specication of the ERC strategy

Starting from the denition of the risk contribution σ

i

(x)


, the idea of the ERC

strategy is to nd a risk-balanced portfolio such that the risk contribution is the

same for all assets of the portfolio. We voluntary restrict ourselves to cases without

short selling, that is 0 ≤ x ≤ 1. One reason is that most investors cannot take short

positions. Moreover, since our goal is to compare the ERC portfolios with other

heuristic approaches, it is important to keep similar constraints for all solutions to

be fair. Indeed, by construction the 1/n portfolio satises positive weights constraint

and it is well-known that constrained portfolios are less optimal than unconstrained

ones (Clarke et al., 2002). Mathematically, the problem can thus be written as

follows:


x = x ∈ [0, 1]

n

:



x

i

= 1, x



i

× ∂


x

i

σ (x) = x



j

× ∂


x

j

σ (x)



for all i, j

(1)


1

The volatility σ is a homogeneous function of degree 1. It thus satises Euler's theorem and

can be reduced to the sum of its arguments multiplied by their rst partial derivatives.

2

In vector form, noting Σ the covariance matrix of asset returns, the n marginal risk contributions



are computed as:

Σx



x Σx

. We verify that: x

Σx



x Σx



=

x Σx = σ (x)



.

4


Using endnote 2 and noting that ∂

x

i



σ (x) ∝ (Σx)

i

,the problem then becomes:



x = x ∈ [0, 1]

n

:



x

i

= 1, x



i

× (Σx)


i

= x


j

× (Σx)


j

for all i, j

(2)

where (Σx)



i

denotes the i

th

row of the vector issued from the product of Σ with x.



Note that the budget constraint

x

i



= 1

is only acting as a normalization one.

In particular, if the portfolio y is such that y

i

× ∂



y

i

σ (y) = y



j

× ∂


y

j

σ (y)



with y

i

≥ 0



but

y

i



= 1

, then the portfolio x dened by x

i

= y


i

/

n



i=1

y

i



is the ERC portfolio.

3 Theoretical properties of ERC portfolios

3.1 The two-asset case (n = 2)

We begin by analyzing the ERC portfolio in the bivariate case. Let ρ be the correla-

tion and x = (w, 1 − w) the vector of weights. The vector of total risk contributions

is:


1

σ (x)


w

2

σ



2

1

+ w(1 − w)ρσ



1

σ

2



(1 − w)

2

σ



2

2

+ w(1 − w)ρσ



1

σ

2



In this case, nding the ERC portfolio means nding w such that both rows are equal,

that is w verifying w

2

σ

2



1

= (1 − w)

2

σ

2



2

.

The unique solution satisfying 0 ≤ w ≤ 1 is:



x =

σ

−1



1

σ

−1



1

+ σ


−1

2

,



σ

−1

2



σ

−1

1



+ σ

−1

2



Note that the solution does not depend on the correlation ρ.

3.2 The general case (n > 2)

In more general cases, where n > 2, the number of parameters increases quickly,

with n individual volatilities and n(n − 1)/2 bivariate correlations.

Let us begin with a particular case where a simple analytic solution can be

provided. Assume that we have equal correlations for every couple of variables,

that is ρ

i,j


= ρ

for all i, j. The total risk contribution of component i thus be-

comes σ

i

(x) = x



2

i

σ



2

i

+ ρ



j=i

x

i



x

j

σ



i

σ

j



/σ (x)

which can be written as σ

i

(x) =


x

i

σ



i

(1 − ρ) x

i

σ

i



+ ρ

j

x



j

σ

j



/σ (x)

. The ERC portfolio being dened by σ

i

(x) =


σ

j

(x)



for all i, j, some simple algebra shows that this is here equivalent

3

to x



i

σ

i



=

x

j



σ

j

. Coupled with the (normalizing) budget constraint



i

x

i



= 1

, we deduce that:

x

i

=



σ

−1

i



n

j=1


σ

−1

j



(3)

3

We use the fact that the constant correlation veries ρ ≥ −



1

n−1


.

5


The weight allocated to each component i is given by the ratio of the inverse of

its volatility with the harmonic average of the volatilities. The higher (lower) the

volatility of a component, the lower (higher) its weight in the ERC portfolio.

In other cases, it is not possible to nd explicit solutions of the ERC portfolio.

Let us for example analyse the case where all volatilities are equal, σ

i

= σ



for all i,

but where correlations dier. By the same line of reasoning as in the case of constant

correlation, we deduce that:

x

i



=

(

n



k=1

x

k



ρ

ik

)



−1

n

j=1



n

k=1


x

k

ρ



jk

−1

(4)



The weight attributed to component i is equal to the ratio between the inverse of

the weighted average of correlations of component i with other components and

the same average across all the components. Notice that contrary to the bivariate

case and to the case of constant correlation, for higher order problems, the solution

is endogenous since x

i

is a function of itself directly and through the constraint



that

i

x



i

= 1


. The same issue of endogeneity naturally arises in the general case

where both the volatilities and the correlations dier. Starting from the denition

of the covariance of the returns of component i with the returns of the aggregated

portfolio, σ

ix

= cov r


i

,

j



x

j

r



j

=

j



x

j

σ



ij

, we have σ

i

(x) = x


i

σ

ix



/σ (x)

. Now,


let us introduce the beta β

i

of component i with the portfolio. By denition, we



have β

i

= σ



ix

2



(x)

and σ


i

(x) = x


i

β

i



σ (x)

. The ERC portfolio being dened by

σ

i

(x) = σ



j

(x) = σ (x) /n

for all i, j, it follows that:

x

i



=

β

−1



i

n

j=1



β

−1

j



=

β

−1



i

n

(5)



The weight attributed to component i is inversely proportional to its beta. The higher

(lower) the beta, the lower (higher) the weight, which means that components with

high volatility or high correlation with other assets will be penalized. Recall that

this solution is endogenous since x

i

is a function of the component beta β



i

which by


denition depends on the portfolio x.

3.3 Numerical solutions

While the previous equations (4) and (5) allow for an interpretation of the ERC

solution in terms of the relative risk of an asset compared to the rest of the portfolio,

because of the endogeneity of the program, it does not oer a closed-form solution.

Finding a solution thus requires the use of a numerical algorithm.

In this perspective, one approach is to solve the following optimization problem

using a SQP (Sequential Quadratic Programming) algorithm:

x

=

arg min f (x)



(6)

u.c. 1 x = 1 and 0 ≤ x ≤ 1

6


where:

f (x) =


n

i=1


n

j=1


x

i

(Σx)



i

− x


j

(Σx)


j

2

The existence of the ERC portfolio is ensured only when the condition f (x ) = 0



is veried, i.e. x

i

(Σx)



i

= x


j

(Σx)


j

for all i, j. Basically, the program minimizes the

variance of the (rescaled) risk contributions.

An alternative to the previous algorithm is to consider the following optimization

problem:

y

=



arg min

y Σy


(7)

u.c.


n

i=1


ln y

i

≥ c



y ≥ 0

with c an arbitrary constant. In this case, the program is similar to a variance min-

imization problem subject to a constraint of sucient diversication of weights (as

implied by the rst constraint), an issue to which we will be back below. This prob-

lem may be solved using SQP. The ERC portfolio is expressed as x

i

= y



i

/



n

i=1


y

i



(see Appendix A.2).

Our preference goes to the rst optimization problem which is easier to solve

numerically since it does not incorporate a non-linear inequality constraint. Still,

we were able to nd examples where numerical optimization was tricky. If a nu-

merical solution for the optimization problem (6) is not found, we recommend to

modify slightly this problem by the following: y = arg min f (y) with y ≥ 0 and

1 y ≥ c

with c an arbitrary positive scalar. In this case, the ERC portfolio is



x

i

= y



i

/



n

i=1


y

i



for f (y ) = 0. This new optimization problem is easier to solve

numerically than (6) because the inequality constraint 1 y ≥ c is less restrictive

than the equality constraint 1 x = 1. On its side, the formulation in (7) has the

advantage that it allows to show that the ERC solution is unique as far as the covari-

ance matrix Σ is positive-denite. Indeed, it is dening the minimization program

of a quadratic function (a convex function) with a lower bound (itself a convex func-

tion). Finally, one should notice that when relaxing the long-only constraint, various

solutions satisfying the ERC condition can be obtained.

3.4 Comparison with 1/n and minimum-variance portfolios

As stated in the introduction, 1/n and minimum-variance (MV) portfolios are widely

used in practice. ERC portfolios are naturally located between both and thus appear


Yüklə 273,64 Kb.

Dostları ilə paylaş:
  1   2   3




Verilənlər bazası müəlliflik hüququ ilə müdafiə olunur ©azkurs.org 2024
rəhbərliyinə müraciət

gir | qeydiyyatdan keç
    Ana səhifə


yükləyin