Ordinal va kardinallar. Kantor teoremasi. Transfinit induksiya. Maksimum prinsipi



Yüklə 1 Mb.
səhifə22/23
tarix20.12.2022
ölçüsü1 Mb.
#76839
1   ...   15   16   17   18   19   20   21   22   23
Ordinal va kardinallar. Kantor teoremasi. Transfinit induksiya.

Kantor-Bernshteyn teoremasi.
Teorema.( Kantor-Bernshteyn) Ixtiyoriy va cheksiz to'plamlar berilgan bo‘lsin. Agar to 'plamni to ‘plarnning qism to‘plamiga biyektiv akslantiruvchi akslantirish va to'plamni to'plarnning qism to ‘plamiga biyektiv akslantimochi akslantirish mavjud bo‘lsa, u holda va to'plamlar ekvivalentdir.
Isbot. Umumiylikni chegaralamasdan, va to'plamlar kesishmaydi deb faraz qilishimiz mumkin. Ixtiyoriy elementni olamiz va
ketma-ketlikni quyidagicha aniqlaymiz. Agar to ‘plamda
shartni qanoatlantiruvchi element mavjud bo'lsa, uni deb beldilaymiz.Agar to ‘plamda tenglikni qanoatlantiruvchi element mavjud bo ‘lsa uni deb beldilaymiz.Aytaylik elementaniqlangan bo ‘lsin .Agar juft bo ‘lsa , u holda orqali
dagi shunday elementni tanlaymizki (agar bunday element mavjud bo'lsa), shart bajarilsin ,agar toq bo ‘lsa , dagi shunday elementki(agar mavjud bo ‘lsa) shart bajarilsin.Bu yerda ikki holat ro ‘y berishi mumkin.

  1. Biror da ko’rsatilgan shartlarni qanoatlantiruvchi element mav­jud bo'lmaydi. Bu holda nomer elementning tartib soni deyiladi.

  2. Cheksiz ketma-ketlikka ega bo'lamiz. Bu holda x elementning

tartibi cheksiz deyiladi.

Endi A to'plamni uchta to'plamga ajratamiz. Juft tartibli elementlardan tashkil bo'lgan qism to'plamni orqali, toq tartibli elementlardan tashkil bo'lgan qism to'plamni orqali va cheksiz tartibli elementlardan tashkil bo'lgan qism to'plamni orqali belgilaymiz. B to'plamni ham xuddi shun day


qismlarga ajratamiz. Tushunish qiyin emaski, f akslan­tirish ni ga va ni ga akslantiradi, akslantirish esa ni ga akslantiradi. Shunday qilib , da f ga teng va da ga teng akslantirish A to ‘plamni B to ‘plamga biyektiv akslantiradi.
To‘plam quvvati tushunchasi. Agar ikkita chekli to‘plam ekviva­lent bo‘lsa, ularning elementlari soni teng bo'ladi; Agar A va B to'plamlar ekvivalent bo‘lsa, u holda ular bir xil quvvatga ega deyiladi. Shunday qilib, quvvat ixtiyoriy ikki ekvivalent to'plamlar uchun unmmiylik xususiyatidir.
Chekli to'plamlar uchun quvvat tushunchasi odatdagi to'plam elementlari soni tushunchasi bilan ustma-ust tushadi. Natural sonlar to'plami va unga ekviva­lent to'plam quvvati uchun (alef nol deb o ‘qiladi)belgi ishlatiladi. [0, 1] keamadagi barcha haqiqiy sonlar to'plamiga ekvivalent to'plamlar haqida, ular kontinuum quvvat ga ega deb gapiradilar. Bu quvvat uchun c yoki N simvol ishlatiladi. va c orasida quvvat mavjudmi degan savol juda chuqur muammo hisoblanadi. Analizda uchraydigan cheksiz to'plamlarning deyarli barchasi yoki >Yoki c quvvatga ega.

Xulosa


Ushbu kurs ishida Sanoqsiz to ‘plamlar,Haqiqiy sonlar


to ‘plamining sanoqsizligi,Kantor-Bernshteyn teoremasi nima uchun kerakli ekani haqida ma’lumotga ega bo ‘ldim.

Yüklə 1 Mb.

Dostları ilə paylaş:
1   ...   15   16   17   18   19   20   21   22   23




Verilənlər bazası müəlliflik hüququ ilə müdafiə olunur ©azkurs.org 2024
rəhbərliyinə müraciət

gir | qeydiyyatdan keç
    Ana səhifə


yükləyin