Take enough time. When planning a lecture/tutorial, budget enough time for: understanding the problem and defining the goal, both individually and as a class; dealing with questions from you and your students; making, finding, and fixing mistakes; and solving entire problems in a single session.
Ask questions and make suggestions. Ask students to predict “what would happen if …” or explain why something happened. This will help them to develop analytical and deductive thinking skills. Also, ask questions and make suggestions about strategies to encourage students to reflect on the problem-solving strategies that they use.
Link errors to misconceptions. Use errors as evidence of misconceptions, not carelessness or random guessing. Make an effort to isolate the misconception and correct it, then teach students to do this by themselves. We can all learn from mistakes.
The system. Have students identify the system under study (e.g., a metal bridge subject to certain forces) by interpreting the information provided in the problem statement. Drawing a diagram is a great way to do this.
Known(s) and concepts. List what is known about the problem, and identify the knowledge needed to understand (and eventually) solve it.
Unknown(s). Once you have a list of knowns, identifying the unknown(s) becomes simpler. One unknown is generally the answer to the problem, but there may be other unknowns. Be sure that students understand what they are expected to find.
Units and symbols. One key aspect in problem solving is teaching students how to select, interpret, and use units and symbols. Emphasize the use of units whenever applicable. Develop a habit of using appropriate units and symbols yourself at all times.
Constraints. All problems have some stated or implied constraints. Teach students to look for the words only, must, neglect, or assume to help identify the constraints.