GF(23) f(x)=x2 va g(x)=x2+x+1 bo’yicha qo’shish amalini bajaramiz, tartibi 3 ga teng bo‘lgan keltirilmaydigan polinom qiymati m(x)=x3+x+1 ga teng bo‘ladi.
Qo’shish: = f(x)+g(x)= (x2) + (x2+x+1) = x+13
Ayirish : f(x) - g(x) = ?
f(x) - g(x) = f(x)+(- g(x))
b=7;
-b=-7 mod 8= 1=0012 -->> 1 = -g(x);
f(x) - g(x) = f(x)+(- g(x))=( x2 ) + 1 =x;
Ko’paytirish : f(x)*g(x)= (x2) * (x2+x+1) = x4+x3+x2=
-->> maydondan chiqib ketganligi uchun mod m(x) ni hisoblaymiz.
x4+x3+x2| x3+x+1 x4+x2+x| x+1
x3 +x
x3 +x+1 1
Javob : f(x)*g(x)=1
Bo’lish : f(x) : g(x)= f(x)*g(x)-1 g(x)-1 mod m(x) a*g(x)+b*m(x)=1 Kengaytirilgan Evklid algoritmidan foydalanib a va b larning qiymatlarini topamiz. (x3+x+1)=(x+1)*(x2+x+1)+x x2+x+1=(x+1)*x+1 x=x*1 1=x2+x+1 - (x+1)*x 1=x2+x+1-((x3+x+1)-(x2+x+1)*(x+1))*(x+1) 1=x2+x+1-(x+1)(x3+x+1)-(x2+x+1)*(x+1)2 1=(x2+x+1)*(x2+x+1)-(x+1)(x3+x+1) g(x) B A m(x)
1-x2-2x-1=-x2-2x f(x) : g(x)= f(x)*g(x)-1=(x+1)*(x2+x+1)=x3+x2+x+x2+x+1=x3+1 Maydondan tashqarida bo’lganligi uchun mod m(x)ni hisoblaymiz.
x3+1 | x3+x+1 x3+x+1| 1
x
Javob : f(x):g(x)=x
a = 105, b = 65
Bizda a=4; b=7;
105=26+25 +23+1; -->> x6+x5+x3+1; 65=26+1; -->> x6+1; GF(23) f(x)=x6+x5+x3+1 va g(x)=x6+1bo’yicha qo’shish amalini bajaramiz, tartibi 3 ga teng bo‘lgan keltirilmaydigan polinom qiymati m(x)=x8+x4+x3+x+1 ga teng bo‘ladi.
Qo’shish: f(x)+g(x)= x6+x5+x3+1 + x6+1 Javobi: x5+x Ayirish : f(x) - g(x) = ?
f(x) - g(x) = f(x)+(- g(x))
b = -65;
-b=-65 mod 256= 191 =10111112 -->> x6+x4+x3 +x2+1= -g(x);
f(x) - g(x) = f(x)+(- g(x))=x6 + x4 + x3 + x6+ x4 + x3+x2 +1
Javobi: x2+1 Ko’paytirish:f(x)*g(x)=( x6+x5+x3+1)* *(x6+1;)= x12+x6+x11+x5+x9+x3+x6+x6+1=x12+x11+x9+x6+x6+x5+x3+1 maydondan chiqib ketganligi uchun x12+x11+x9+x5+x3+1 mod m(x) ni hisoblaymiz.
x12+x9+x8+x5+x4=(x8+x4+x3+x+1)*(x4+x)+(x7+x5+x4+x2+x)
Javob : f(x)*g(x)=x7+x5+x4+x2+x Bo’lish : f(x) : g(x)= f(x)*g(x)-1 g(x)-1 mod m(x) a*g(x)+b*m(x)=1 Kengaytirilgan Evklid algoritmidan foydalanib a va b larning qiymatlarini topamiz.
(x8+x4+x3+x+1) = (x6+x4+x)*(x2+1)+1 1 = (x8+x4+x3+x+1) - (x2+1)*(x6+x4+x) a=1; b= - (x2+1); b = -(x2+1) bo`lgani uchun biz buni maydonga tushirib olamiz. Buning uchun modlab olamiz. -(x2+1)=-5mod256=251=(x7+x6+x5+x4+x3+x+1) g(x)-1=x7+x6+x5+x4+x3+x+1; f(x):g(x)=f(x)*g(x)-1=(x6+x4+x3)*(x6+x2+x)=x13+x12+x11+x10+x9+x7+x6+x11+x10+x9+x8+x7+x5+x4+x10+ x9+x8+x7+x6+x4+x3=x13+x12+x10+x9+x7+x5+x3
Maydondan tashqarida bo’lganligi uchun mod m(x)ni hisoblaymiz.