Nature Publishing Group



Yüklə 386,38 Kb.
Pdf görüntüsü
səhifə5/5
tarix13.04.2017
ölçüsü386,38 Kb.
#13853
1   2   3   4   5

NEUROSCIENCE

 

 VOLUME 7 

|

 SEPTEMBER 2006 



|

 721


©

 

200



6

 

Nature Publishing Group

 

 

116.  Sasaki, S. & Iwata, M. Impairment of fast axonal 



transport in the proximal axons of anterior horn 

neurons in amyotrophic lateral sclerosis. Neurology 



47, 535–540 (1996).

117.  Sasaki, S., Warita, H., Abe, K. & Iwata, M. Impairment 

of axonal transport in the axon hillock and the initial 

segment of anterior horn neurons in transgenic mice 

with a G93A mutant SOD1 gene. Acta Neuropathol. 

(Berl.) 100, 48–56 (2005).

118.  Zhang, B., Tu, P., Abtahian, F., Trojanowski, J. Q. & 

Lee, V. M. Neurofilaments and orthograde transport 

are reduced in ventral root axons of transgenic mice 

that express human SOD1 with a G93A mutation. 

J. Cell Biol. 139, 1307–1315 (1997).

119.  Borchelt, D. R. et al. Axonal transport of mutant 

superoxide dismutase 1 and focal axonal 

abnormalities in the proximal axons of transgenic 

mice. Neurobiol. Dis. 5, 27–35 (1998).

120.  Williamson, T. & Cleveland, D. Slowing of axonal 

transport is a very early event in the toxicity of ALS-

linked SOD1 mutant to motor neurons. Nature 



Neurosci. 1, 50–56 (1999).

121.  Murakami, T. et al. Impaired retrograde axonal 

transport of adenovirus-mediated E. coli LacZ gene in 

the mice carrying mutant SOD1 gene. Neurosci. Lett. 



308, 149–152 (2001).

122.  Rao, M. V. & Nixon, R. A. Defective neurofilament 

transport in mouse models of amyotrophic lateral 

sclerosis: a review. Neurochem. Res. 28, 1041–1047 

(2003).

123.  Ligon L. A. et al. Mutant superoxide dismutase 



disrupts cytoplasmic dynein in motor neurons. 

Neuroreport 16, 533–536 (2005).

124.  Witherden, A. S. et al. An integrated genetic, radiation 

hybrid, physical and transcription map of a region of 

distal mouse chromosome 12, including an imprinted 

locus and the ‘Legs at odd angles’ (Loa) mutation. 

Gene 283, 71–82 (2002).

125.  Hafezparast, M. et al. Mutations in dynein link motor 

neuron degeneration to defects in retrograde 

transport. Science 300, 808–812 (2003).

126.  LaMonte, B. H. et al. Disruption of dynein/dynactin 

inhibits axonal transport in motor neurons causing 

late-onset progressive degeneration. Neuron 34

715–727 (2002).

127.  Kieran, D. et al. A mutation in dynein rescues axonal 

transport defects and extends the life span of ALS 

mice. J. Cell Biol. 169, 561–567 (2005).

128.  Teuchert, M. et al. A dynein mutation attenuates 

motor neuron degeneration in SOD1(G93A) mice. 

Exp. Neurol. 198, 271–274 (2006).

129.  Vande Velde, C., Garcia, M. L., Yin, X., Trapp, B. D. & 

Cleveland, D. W. The neuroprotective factor Wlds 

does not attenuate mutant SOD1-mediated motor 

neuron disease. Neuromolecular Med. 5, 193–203 

(2004).


130.  Pigino, G. et al. Alzheimer’s presenilin 1 mutations 

impair kinesin-based axonal transport. J. Neurosci. 



23, 4499–4508 (2003).

131.  Morfini, G., Pigino, G., Beffert, U., Busciglio, J. & 

Brady, S. T. Fast axonal transport misregulation and 

Alzheimer’s disease. Neuromolecular Med. 2, 89–99 

(2002).

132.  Trushina, E. et al. Mutant huntingtin impairs axonal 



trafficking in mammalian neurons in vivo and in vitro

Mol. Cell Biol. 24, 8195–8209 (2004).

133.  Schmitt-John, T. et al. Mutation of Vps54 causes 

motor neuron disease and defective spermiogenesis in 

the wobbler mouse. Nature Genet. 37, 1213–1215 

(2005).

134.  Rothstein, J., Kammen, M., Levey, A., Martin, L. & 



Kuncl, R. Selective loss of glial glutamate transporter 

GLT-1 in amyotrophic lateral sclerosis. Ann. Neurol. 



38, 73–84 (1995).

135.  Rothstein, J. D. et al. Abnormal excitatory amino acid 

metabolism in amyotrophic lateral sclerosis. Ann. 

Neurol. 28, 18–25 (1990).

136.  Rothstein, J. D., Martin, L. J. & Kuncl, R. W. Decreased 

glutamate transport by the brain and spinal cord in 

amyotrophic lateral sclerosis [see comments]. N. Engl. 



J. Med. 326, 1464–1468 (1992).

137.  Arriza, J. L. et al. Functional comparisons of three 

glutamate transporter subtypes cloned from human 

motor cortex. J. Neurosci. 14, 5559–5569 (1994).

138.  Arriza, J. L., Eliasof, S., Kavanaugh, M. P. & Amara, S. G. 

Excitatory amino acid transporter 5, a retinal 

glutamate transporter coupled to a chloride 

conductance. Proc. Natl Acad. Sci. USA 94

4155–4160 (1997).

139.  Fairman, W. A., Vandenberg, R. J., Arriza, J. L., 

Kavanaugh, M. P. & Amara, S. G. An excitatory amino-

acid transporter with properties of a ligand-gated 

chloride channel. Nature 375, 599–603 (1995).

140.  Trotti, D., Rolfs, A., Danbolt, N. C., Brown, R. H. Jr & 

Hediger, M. A. SOD1 mutants linked to amyotrophic 

lateral sclerosis selectively inactivate a glial glutamate 

transporter. Nature Neurosci 2, 848 (1999).

141.  Howland, D. S. et al. Focal loss of the glutamate 

transporter EAAT2 in a transgenic rat model of SOD1 

mutant-mediated amyotrophic lateral sclerosis (ALS). 



Proc. Natl Acad. Sci. USA 99, 1604–1609 (2002).

142.  Lin, C. L. et al. Aberrant RNA processing in a 

neurodegenerative disease: the cause for absent 

EAAT2, a glutamate transporter, in amyotrophic 

lateral sclerosis. Neuron 20, 589–602 (1998).

143.  Aoki, M. et al. Mutations in the glutamate transporter 

EAAT2 gene do not cause abnormal EAAT2 transcripts 

in amyotrophic lateral sclerosis. Ann. Neurol. 43

645–653 (1998).

144.  Trotti, D. et al. Amyotrophic lateral sclerosis-linked 

glutamate transporter mutant has impaired glutamate 

clearance capacity. J. Biol. Chem. 276, 576–582 

(2001).

145.  Alexianu, M. E. et al. The role of calcium-binding 



proteins in selective motoneuron vulnerability in 

amyotrophic lateral sclerosis. Ann. Neurol. 36

846–858 (1994).

146.  Williams, D. N. C. & Ince, P. G. 

α-amino-3-hydroxy-5-

methyl-4-isoxazole propionic acid receptors: a molecular 

determinant of selective vulnerability in amyotrophic 

lateral sclerosis. Ann. Neurol. 42, 200–207 (1997).

147.  Ince, P. G., Shaw, P. J., Slade, J. Y., Jones, C. & 

Hudgson, P. Familial amyotrophic lateral sclerosis with 

a mutation in exon 4 of the Cu/Zn superoxide 

dismutase gene: pathological and 

immunocytochemical changes. Acta Neuropathol. 

(Berl.) 92, 395–403 (1996).

148.  Pramatarova, A., Laganiere, J., Roussel, J., Brisebois, K. 

& Rouleau, G. A. Neuron specific expression of mutant 

superoxide dismutase 1 in transgenic mice does not 

lead to motor neuron impairment. J. Neurosci. 21

3369–3374 (2001).

149.  Gong, Y. H., Parsadanian, A. S., Andreeva, A., 

Snider, W. D. & Elliott, J. L. Restricted expression of 

G86R Cu/Zn superoxide dismutase in astrocytes 

results in astrocytosis but does not cause motoneuron 

degeneration. J. Neurosci. 20, 660–665 (2000).

150.  Clement, A. M. et al. Wild-type nonneuronal cells 

extend survival of SOD1 mutant motor neurons in ALS 

mice. Science 302, 113–117 (2003).



Demonstrates the importance of non-neuronal cells 

in ALS pathogenesis.

151.  Boillee, S. et al. Onset and progression in inherited 

ALS determined by motor neurons and microglia. 

Science 312, 1389–1392 (2006).

Elegantly highlights the importance of microglia for 

disease progression in transgenic ALS mice.

152.  Wang, J. et al. Coincident thresholds of mutant 

protein for paralytic disease and protein aggregation 

caused by restrictively expressed superoxide dismutase 

cDNA. Neurobiol. Dis. 20, 943–952 (2005).

153.  Lefebvre, S. et al. Identification and characterization of 

a spinal muscular atrophy-determining gene. Cell 80

155–165 (1995).

154.  Mersiyanova, I. V. et al. A new variant of Charcot-

Marie-Tooth disease type 2 is probably the result of a 

mutation in the neurofilament-light gene. Am. J. Hum. 

Genet. 67, 37–46 (2000).

155.  Bomont, P. et al. The gene encoding gigaxonin, a new 

member of the cytoskeletal BTB/kelch repeat family, is 

mutated in giant axonal neuropathy. Nature Genet. 



26, 370–374 (2000).

156.  Kuhlenbaumer, G. Giant axonal neuropathy (GAN): 

case report and two novel mutations in the gigaxonin 

gene. Neurology 58, 1273–1276 (2002).

157.  Zhao, C. et al. Charcot-Marie-Tooth disease type 2A 

caused by mutation in a microtubule motor KIF1B

β. 

Cell 105, 587–597 (2001).

158.  Zuchner, S. et al. Mutations in the pleckstrin homology 

domain of dynamin 2 cause dominant intermediate 

Charcot-Marie-Tooth disease. Nature Genet. 37

289–294 (2005).

159.  Zhao, X. et al. Mutations in a newly identified GTPase 

gene cause autosomal dominant hereditary spastic 

paraplegia. Nature Genet. 29, 326–331 (2001).

160.  Verhoeven, K. et al. Mutations in the small GTP-ase 

late endosomal protein RAB7 cause Charcot-Marie-

Tooth type 2B neuropathy. Am. J. Hum. Genet. 72

722–727 (2003).

161.  Patel, H. et al. SPG20 is mutated in Troyer syndrome, 

an hereditary spastic paraplegia. Nature Genet. 31

347–348 (2002).

162.  Antonellis, A. et al. Glycyl tRNA synthetase mutations 

in Charcot-Marie-Tooth disease type 2D and distal 

spinal muscular atrophy type V. Am. J. Hum. Genet. 



72, 1293–1299 (2003).

163.  Jordanova, A. et al. Disrupted function and axonal 

distribution of mutant tyrosyl-tRNA synthetase in 

dominant intermediate Charcot-Marie-Tooth 

neuropathy. Nature Genet. 38, 197–202 (2006).

164.  Kalaydjieva, L. et al. N-myc downstream-regulated 



gene 1 is mutated in hereditary motor and sensory 

neuropathy-Lom. Am. J. Hum. Genet. 67, 47–58 

(2000).

165.  Grohmann, K. et al. Mutations in the gene encoding 



immunoglobulin mubinding protein 2 cause spinal 

muscular atrophy with respiratory distress type 1. 



Nature Genet. 29, 75–77 (2001).

166.  Evgrafov, O. V. et al. Mutant small heat-shock protein 

27 causes axonal Charcot-Marie-Tooth disease and 

distal hereditary motor neuropathy. Nature Genet. 36

602–606 (2004).

167.  Irobi, J., De Jonghe, P. & Timmerman, V. Molecular 

genetics of distal hereditary motor neuropathies. 

Hum. Mol. Genet. 13, R195–R202 (2004).

168.  White, R. J. & Reynolds, I. J. Mitochondrial 

depolarization in glutamate-stimulated neurons: an 

early signal specific to excitotoxin exposure. 



J. Neurosci. 16, 5688–5697 (1996).

169.  Roa, B. B., Garcia, C. A. & Lupski, J. R. Charcot-Marie-

Tooth disease type 1A: molecular mechanisms of gene 

dosage and point mutation underlying a common 

inherited peripheral neuropathy. Int. J. Neurol. 

25–26, 97–107 (1991).

170.  Hayasaka, K. et al. De novo mutation of the myelin P

0

 

gene in Dejerine-Sottas disease (hereditary motor and 



sensory neuropathy type III). Nature Genet. 5

266–268 (1993).

171.  Street, V. A. et al. Mutation of a putative protein 

degradation gene LITAF/SIMPLE in Charcot-Marie-

Tooth disease 1C. Neurology 60, 22–26 (2003).

172.  Warner, L. E. et al. Mutations in the early growth 

response 2 (EGR2) gene are associated with 

hereditary myelinopathies. Nature Genet. 18

382–384 (1998).

173.  Baxter, R. V. et al. Ganglioside-induced differentiation-

associated protein-1 is mutant in Charcot-Marie-Tooth 

disease type 4A/8q21. Nature Genet. 30, 21–22 

(2002).

174.  Bolino, A. et al. Charcot-Marie-Tooth type 4B is 



caused by mutations in the gene encoding 

myotubularin-related protein-2. Nature Genet. 25

17–19 (2000).

175.  Senderek, J. et al. Mutation of the SBF2 gene, 

encoding a novel member of the myotubularin 

family, in Charcot-Marie-Tooth neuropathy type 

4B2/11p15. Hum. Mol. Genet. 12, 349–356 

(2003).


176.  Senderek, J. et al. Mutations in a gene encoding a 

novel SH3/TPR domain protein cause autosomal 

recessive Charcot-Marie-Tooth type 4C neuropathy. 

Am. J. Hum. Genet. 73, 1106–1119 (2003).

177.  Boerkoel, C. F. et al. Periaxin mutations cause 

recessive Dejerine-Sottas neuropathy. Am. J. Hum. 

Genet. 68, 325–333 (2001).

178.  Bergoffen, J. et al. Connexin mutations in X-linked 

Charcot-Marie-Tooth disease. Science 262

2039–2042 (1993).

179.  Bruijn, L. I. & Cudkowicz, M. Therapeutic targets for 

amyotrophic lateral sclerosis: current treatments and 

prospects for more effective therapies. Expert Rev. 

Neurother. 6, 417–428 (2006).

180.  Kaspar, B. K., Llado, J., Sherkat, N., Rothstein, J. D. & 

Gage, F. H. Retrograde viral delivery of IGF-1 prolongs 

survival in a mouse ALS model. Science 301

839–842 (2003).

Describes an effective therapy in ALS mice based 

on the delivery of insulin-like growth factor 1 (IGF1) 

to motor neurons via a retrogradely transported 

AAV2–IGF1 gene therapy vector. 

181.  Raoul, C. et al. Lentiviral-mediated silencing of SOD1 

through RNA interference retards disease onset and 

progression in a mouse model of ALS. Nature Med. 



11, 423–428 (2005).

182.  Ralph, G. S. et al. Silencing mutant SOD1 using RNAi 

protects against neurodegeneration and extends 

survival in an ALS model. Nature Med. 11, 429–433 

(2005).

References 180 and 181 present compelling 

evidence that the process of motor neuron cell 

death in ALS mice can be slowed using inhibitory 

RNA to silence the offending, mutated SOD1 

genes.

R E V I E W S

722 

|

 SEPTEMBER 2006 



|

 VOLUME 7 



 

www.nature.com/reviews/neuro

©

 

200



6

 

Nature Publishing Group

 

 

183.  Ralph, G. S., Mazarakis, N. D. & Azzouz, M. 



Therapeutic gene silencing in neurological disorders, 

using interfering RNA. J. Mol. Med. 83, 413–419 

(2005).

184.  Maxwell, M. M., Pasinelli, P., Kazantsev, A. G. & 



Brown, R. H. Jr. RNA interference-mediated silencing 

of mutant superoxide dismutase rescues cyclosporin 

A-induced death in cultured neuroblastoma cells. 

Proc. Natl Acad. Sci. USA 101,3178–3185 (2004).

185.  Miller, T. M. et al. Virus-delivered small RNA silencing 

sustains strength in amyotrophic lateral sclerosis. 

Ann. Neurol. 57, 773–776 (2005).

186.  Smith, R. A. et al. Antisense oligonucleotide therapy 

for neurodegenerative disease. J. Clin. Invest. 116

2290–2296 (2006).

187. Wills, A. M. & Brown, R. H. Jr in Amyotrophic Lateral 

Sclerosis Ch. 14 (eds Brown, R. H. Jr, Swash, M. & 

Pasinelli, P.) 269–282 (Taylor & Francis, Abingdon, 

2006).

188.  Zuchner, S. et al. Mutations in the mitochondrial 



GTPase mitofusin 2 cause Charcot-Marie-Tooth 

neuropathy type 2A. Nature Genet. 36, 449–451 

(2004).

189. Zuchner, S. et al. Mutations in the pleckstrin homology 



domain of dynamin 2 cause dominant intermediate 

Charcot-Marie-Tooth disease. Nature Genet37

289–294 (2005).

190.  Verhoeven, K. et al. Slowed conduction and thin 

myelination of peripheral nerves associated with 

mutant rho Guanine-nucleotide exchange factor 10. 



Am. J. Hum. Genet. 73, 926–932 (2003).

191.  Bejaoui, K. et al. SPTLC1 is mutated in hereditary 

sensory neuropathy, type 1. Nature Genet. 27

261–262 (2001).

192.  Grandchamp, B. et al. Tissue-specific splicing mutation 

in acute intermittent porphyria. Proc. Natl Acad. Sci. 



USA 86, 661–664 (1989).

193.  Goizet, C. et al. A new mutation of the lamin A/C gene 

leading to autosomal dominant axonal neuropathy, 

muscular dystrophy, cardiac disease, and leuconychia. 



J. Med. Genet. 41, e29 (2004).

194.  DeSandre-Giovannoli, A. et al. Homozygous defects 

in LMNa, encoding lamin A/C nuclear envelope 

proteins, cause autosomal recessive neuropathy in 

human (Charcot-Marie Tooth disorder, Type 2) 

and mouse. Am. J. Hum. Gen70, 726–736 

(2002).

195.  Howard, H. C. et al. The K–Cl cotransporter KCC3 is 



mutant in a severe peripheral neuropathy associated 

with agenesis of the corpus callosum. Nature Genet. 



32, 384–392 (2002).

196. Indo, Y. et al. Mutations in the TRKA/NGF receptor 

gene in patients with congenital insensitivity to pain 

with anhidrosis. Nature Genet. 13, 485–488 (1996).

197.  Kihara, H., Fluharty, A. L., O’Brien, J. S. & Fish, C. H. 

Metachromatic leukodystrophy caused by a partial 

cerebroside sulfatase. Clin. Genet. 21, 253–261 (1982).

198.  Mihalik, S. J. et al. Identification of PAHX, a Refsum 

disease gene. Nature Genet. 17, 185–189 (1997).

199.  Anderson, S. L. et al. Familial dysautonomia is caused 

by mutations of the IKAP gene. Am. J. Hum. Genet. 

68, 753–758 (2001).

200.  Rust, S. et al. Tangier disease is caused by mutations 

in the gene encoding ATP-binding cassette 

transporter 1. Nature Genet. 22, 352–355 (1999).

201. La Spada, A. R., Wilson, E. M., Luban, D. B., 

Harding, A. E. & Fischbeck, K. H. Androgen receptor 

gene mutations in X-linked spinal and bulbar muscular 

atrophy. Nature 352, 77–79 (1991).

202. Yamada, K. et al. Heterozygous mutations of the 

kinesin KIF21A in congenital fibrosis of the extraocular 

muscles type 1 (CFEOM1). Nature Genet. 35

318–321 (2003).

203.  Takeda, K. et al. Fine assignment of 

β-hexosaminidase 

α subunit on 15q23–24 by high resolution in situ 



hybridization. Tohoku J. Exp. Med. 160, 203–211 

(1990).


204. Windpassinger, C. et al. Heterozygous missense 

mutations in BSCL2 are associated with distal 

hereditary motor neuropathy and Silver syndrome. 

Nature Genet. 36, 271–276 (2004).

205. Hansen, J. J. et al. Hereditary spastic paraplegia 

SPG13 is associated with a mutation in the gene 

encoding the mitochondrial chaperonin Hsp60. 



Am. J. Hum. Genet. 70, 1328–1332 (2002). 

206. Reid, E. et al. A kinesin heavy chain (KIF5A) mutation 

in hereditary spastic paraplegia (SPG10). Am. J. Hum. 

Genet. 71, 1189–1194 (2002).

207.  Rainier, S., Chai, J. H., Tokarz, D., Nicholls, R. D. & 

Fink, J. K. NIPA1 gene mutations cause autosomal 

dominant hereditary spastic paraplegia (SPG6). 



Am. J. Hum. Genet. 73, 967–971 (2003).

208. Hazan, J. et al. Spastin, a new AAA protein, is altered 

in the most frequent form of autosomal dominant 

spastic paraplegia. Nature Genet. 23, 296–303 

(1999).

209.  O’Neill, B. P., Swanson, J. W., Brown, F. R., Griffin, J. W. 



& Moser, H. W. Familial spastic paraparesis: an 

adrenoleukodystrophy phenotype? Neurology 35

1233–1235 (1985).

210.  Simpson, M. A. et al. Maspardin is mutated in mast 

syndrome, a complicated form of hereditary spastic 

paraplegia associated with dementia. Am. J. Hum. 



Genet. 73, 1147–1156 (2003).

211.  Casari, G. et al. Spastic paraplegia and OXPHOS 

impairment caused by mutations in paraplegin, a 

nuclear-encoded mitochondrial metalloprotease. 



Cell 93, 973–983 (1998).

212.  Touraine, R. L. et al. Neurological phenotype in 

Waardenburg syndrome type 4 correlates with novel 

SOX10 truncating mutations and expression in 

developing brain. Am. J. Hum. Genet. 66

1496–1503 (2000).

213.  Jouet, M. et al. X-linked spastic paraplegia (SPG1), 

MASA syndrome and X-linked hydrocephalus result in 

mutations in the L1 gene. Nature Genet. 7, 402–407 

(1994).


214.  Saugier-Veber, P. et al. X-linked spastic paraplegia and 

Pelizaeus-Merzbacher disease are allelic disorders at 

the proteolipid protein locus. Nature Genet. 6

257–262 (1994).



Acknowledgements

The authors wish to acknowledge the following for generous 

support of ALS research:  Al-Athel ALS Research Foundation, 

ALS Association, ALS Therapy Alliance, Angel Fund, Muscular 

Dystrophy Association, National Institutes of Health (National 

Institute of Neurological Disorders and Stroke, National 

Institute on Aging), Pierre L. de Bourgknecht ALS Foundation, 

Pape Adams Foundation, Project ALS and Spinal Cord 

Research Foundation.

Competing interests statement

The authors declare no competing financial interests.

DATABASES

The following terms in this article are linked online to:

Entrez Gene:

 

http://www.ncbi.nlm.nih.gov/entrez/query.



fcgi?db=gene

ALS2 | ANG | CASP1 | CASP3 | CASP7 | CASP8 | CASP9 | COX1 | 

dynactin | EAAT2 | SETX | SOD1 | VAPB | VEGF

OMIM: http://www.ncbi.nlm.nih.gov/entrez/query.

fcgi?db=OMIM

Amyotrophic lateral sclerosis | Huntington’s disease | SMARD

FURTHER INFORMATION

ALS Online Database: http://www.alsod.org

SUPPLEMENTARY INFORMATION

See online article: S1 (figure)



Access to this links box is available online.

 

R E V I E W S

NATURE REVIEWS 

|

 



NEUROSCIENCE

 

 VOLUME 7 



|

 SEPTEMBER 2006 



|

 723

Yüklə 386,38 Kb.

Dostları ilə paylaş:
1   2   3   4   5




Verilənlər bazası müəlliflik hüququ ilə müdafiə olunur ©azkurs.org 2025
rəhbərliyinə müraciət

gir | qeydiyyatdan keç
    Ana səhifə


yükləyin