Nature Publishing Group



Yüklə 386,38 Kb.
Pdf görüntüsü
səhifə2/5
tarix13.04.2017
ölçüsü386,38 Kb.
#13853
1   2   3   4   5

Aberrant redox chemistry

Protein toxicity

could also enhance the release of copper and zinc, and 

trigger copper and/or zinc-mediated neurotoxicity.

The concept that mutant SOD1 provokes aberrant 

oxyradical reactions has been controversial. Some of 

the key findings have not been consistently detected; for 

example, increased levels of oxidative markers are evi-

dent in transgenic ALS G93A-SOD1 mice and patients 

with SALS

58,59


 but not in transgenic G37R mice

60



Another inconsistency is the impact of forced expression 

of wild-type SOD1 jointly with mutant SOD1 transgenes. 

In G85R mice, genetic manipulations of levels of wild-

type SOD1 (elimination or forced expression at high 

levels) do not affect the age of onset, the survival or the 

rate of progression; these findings could be used to argue 

against a direct role of heightened oxygen-mediated tox-

icity in the degeneration of motor neurons

61

. By contrast, 



the forced expression of high levels of wild-type SOD1 

in G93A, L126Z and A4V-SOD1 mice accelerates the 

onset of the disease

62,63


. This effect has been attributed 

to the enhanced formation of mitochondrial aggregates 

containing both mutant and wild-type SOD1 

(REF. 63)

.

Also of note is evidence that transgenic mice that lack 



a protein required to load copper into SOD1 possess only 

minute levels of SOD1-bound copper and have drasti-

cally reduced dismutation activity but still develop motor 

neuron disease

64

. Moreover, mice that harbour mutations 



in the histidines that bind copper in the SOD1 active site, 

which leads to loss of dismutase activity, also develop 

motor neuron disease

65

. Similarly, the G86R mutated 



murine form of SOD1 causes motor neuron disease in 

mice, even though a possible alternative copper-loading 

site, Cys111, is absent

66

. The most plausible interpreta-



tion is that copper-mediated oxyradical chemistry is not 

required for the motor neuron pathology provoked by 

mutant SOD1; a caveat is that the mutant SOD1 might 

exert aberrant catalysis through copper loaded in a 

copper chaperone for SOD1 (CCS)-independent fashion 

on the surface of the protein

67

.

Protein instability and SOD1 aggregation. Another 



set of hypotheses propose that the conformational 

instability of mutant SOD1 induces the formation of 

harmful aggregates. In transgenic rodents with SOD1-

mediated ALS (including copper-binding-site-null 

mice) and in some human ALS cases, aggregates that 

are immunoreactive for SOD1 are detected in motor 

neurons, the neuropil and astrocytes

61,68


. In these trans-

genic mice, these aggregates become evident by the time 

of disease onset

69,70


, and increase in abundance with 

disease progression

61,69,70

.

In vitro  studies have shown that, in contrast to 



stable, dimeric wild-type SOD1, the mutant proteins 

oligomerize over time to form small pore-like structures 

that are similar to some forms of 

β-amyloid protein

71,72



Whether such protein structures in vitro correspond 



to structures in human ALS neural tissue in vivo is not 

known. In the transgenic animal models, the formation 

of non-native, sub-microscopic, detergent-insoluble 

SOD1 species is a common feature of all mutant SOD1 

proteins. Because this is not the case for the large, intra-

cellular aggregates, it could be that the less evident 

microscopic aggregates are the vital aggregated 

protein component in mutant SOD1-mediated ALS. Are 

SOD1-associated protein inclusions toxic? If so, why are 

they toxic? As in other neurodegenerative disorders, it 

remains unclear whether protein aggregates that are 

detected in the CNS are harmful. As in 

Huntington’s 

disease


, it might be that protein inclusions are favour-

able, perhaps because they sequester the mutant protein. 

By contrast, studies have reported a correlation between 

protein aggregation and a clinical phenotype of trans-

genic SOD1 mice: mutations that cause a more severe 

disease (gauged by shortened survival) have a shorter 

half-life and the protein products are more likely to form 

aggregates

73,74

. There is considerable speculation about 



the potential toxicity of inclusions. It has been proposed 

that inclusions could both mediate oxyradical chemistry 

(see above) and overwhelm the proteasome. The latter 

is predicted to impair protein degradation and recycling 

(not only of mutant SOD1 but also of other proteins 

normally processed by proteasomes) and sequester 

proteins that are crucial for cellular processes, such 

as heat-shock proteins (HSPs). Mutant SOD1 directly 

interacts with HSPs, such as HSP70, HSP40, HSP27 and 

Figure 1 | Models of mutant SOD1-mediated toxicity. The instability of the mutant 

protein contributes to its toxicity, sometimes enhanced by the release of Zn. In the 

aberrant redox chemistry model, mutant superoxide dismutase 1 (SOD1) is unstable and 

the active channel opens, permitting aberrant chemistry through promiscuous 

interaction with non-conventional substrates. Hydrogen peroxide (H

2

O

2



) or nitronium 

ion (ONOO

) can react with reduced SOD1 (SOD1



Cu

+



). Molecular oxygen (O

2

) can react 



aberrantly with Zn-deficient SOD1 to generate an excess of superoxide anion (O

2

.-



). The 

unstable protein could also release free copper and/or zinc, which might be toxic. In the 

protein toxicity model, unstable, conformationally altered mutant SOD1 could form 

toxic, proteinaceous deposits. Aggregated SOD1 could inhibit chaperone and/or 

proteasome activity, with subsequent misfolding and insufficient clearance of numerous 

proteins. Alternatively, these aggregates could sequester, inactivate or enhance the 

toxicity of other proteins crucial for cellular processes.

R E V I E W S

NATURE REVIEWS 

|

 



NEUROSCIENCE

 

 VOLUME 7 

|

 SEPTEMBER 2006 



|

 713


©

 

200



6

 

Nature Publishing Group

 

 

Astrocyte



Microglia

Glutamate

Caspase

 activation



Caspase 

activation

EAAT2

Cytokines 



(for example, TNF

α)

Nucleus



Proteasome

stress


Mitochondrial

stress


ER stress

Golgi


Cell body

Microtubule

Neurofilaments

Axon


Synapse

Cell death

Δ

 

DNA/RNA



metabolism

ATP


Ca

++

CytC



Δ

 

Vesicle 



trafficking

Mutant SOD1

Toxicity

Glutamate

receptor

Synaptic vesicle

Altered axonal

transport

Axonal transport 

motor


Mutant

SOD1


Mutant SOD1

Presynaptic 

neuron terminal

BCL2


The founding member of a 

family of apoptosis-regulating 

proteins. Many BCL2 family 

members regulate 

mitochondria-dependent steps 

in cell death pathways, with 

some suppressing and others 

promoting the release of 

apoptogenic proteins from 

these organelles.

Apoptosis

A mode of cell death in which 

the cell triggers its own 

destruction by activating pre-

programmed intracellular 

suicide machinery.

Caspases 

A family of intracellular 

cysteine endopeptidases that 

have a key role in mammalian 

apoptosis. They cleave proteins 

at specific aspartate residues.

Astrogliosis

Proliferation and ramification 

of glial cells in response to 

brain damage. 

Microgliosis

Proliferation and activation of 

microglial cells, which are the 

primary immune effector cells 

in the brain.

αβ-crystallin

75

, perhaps impairing the chaperone and/or 



the anti-apoptotic function of these proteins. It is likely 

that mutant SOD1 also sequesters the anti-apoptotic 

protein 

BCL2


 at the surface of mitochondria

76

.



Apoptosis in ALS. Biochemical markers of 

apoptosis

 can 

be detected in the terminal stages of human and trans-



genic ALS

77–85


. Early reports suggested that SOD1 muta-

tions transform SOD1 from an anti- to a pro-apoptotic 

protein. Cultured neuronal cells either transfected or 

microinjected with mutant SOD1 cDNAs die by apop-

tosis

78,79


. Mutant SOD1 protein is also pro-apoptotic 

in an ALS transgenic mouse model

79–83

. Additional 



evidence linking SOD1 to apoptosis comes from the 

impairment of the association of cytochrome c (an 

intermediate in the apoptosis pathway) with the inner 

membrane of the mitochondrion in ALS transgenic 

mice, and from the finding that a gradual reduction 

in intra-mitochondrial cytochrome c correlates with 

disease progression

84

.



Activation of 

caspase 1

 (

CASP1


) is the earliest molec-

ular abnormality in the SOD1-G85R mice, occurring 

months before 

CASP3


 activation, motor neuron death 

and clinical onset

79–89

. In the spinal cord, activated CASP3 



is found in both motor neurons and astrocytes

80

, where it 



cleaves the astroglial excitatory amino acid transporter 2 

(

EAAT2



)

85

. In the G93A-SOD1 mice at least, the activa-



tion of another downstream caspase (

CASP7


) also 

coincides with disease onset

86

. In agreement with the 



hierarchical order of caspase activation, in the G93A-

SOD1 mice, cytochrome c translocation to the cytosol 

and concomitant 

CASP9


 activation follow CASP1 and 

precede CASP3 and CASP7 activation

86

. Because the 



activation of CASP1 has been involved in both apoptosis 

and inflammation, it is possible that prolonged activa-

tion is a consequence of (and exacerbates) chronic neural 

inflammation (

astrogliosis

 and 


microgliosis

) in these mice. 

Alternatively, in contrast to developmental apoptosis 

in which cell death proceeds rapidly, mutant SOD1-

mediated early caspase activation might initiate a slowly 

Figure 2 | Mutant SOD1 impairs multiple cellular functions. The toxicity of mutant superoxide dismutase 1 (SOD1) is 

multi-factorial, operating through diverse, interrelated pathways. Within the motor neuron, mutant SOD1 adversely 

affects DNA/RNA metabolism, mitochondria (diminishing ATP production and calcium buffering, increasing the release of 

free calcium), neurofilaments and axonal transport, and the function of the endoplasmic reticulum (ER), the Golgi 

apparatus and proteasomes. In turn, ER stress and apoptotic cascades are activated. Through an interaction with 

chromogranin (a secretory glycoprotein), mutant SOD1 could be secreted from the motor neuron. The pathological 

process also involves the activation and dysfunction of astrocytes and microglia. Astroglial uptake of glutamate is reduced, 

contributing to excessive extracellular glutamate and excitotoxicity. Microglia secrete cytokines such as tumour necrosis 

factor-


α (TNFα) that could be toxic and cause cellular damage. So, the death process in motor neurons reflects a complex 

interplay between intrinsic (autonomous) and extrinsic (non-cell autonomous) phenomena. CytC, cytochrome c; 

EAAT2, excitatory amino acid transporter 2. Modified, with permission, from 

REF. 187


 

© (2006) Taylor and Francis.

R E V I E W S

714 


|

 SEPTEMBER 2006 

|

 VOLUME 7 



 

www.nature.com/reviews/neuro

©

 

200



6

 

Nature Publishing Group

 

 

a  



Cytoplasm

b

Mutant SOD1



Toxicity

Matrix


Outer membrane

PTP


BCL2

TOM


Activation of 

apoptotic pathway

Altered 

mitochondrial 

permeability

CytC


Inhibition of 

protein import

Intermembrane space

Toxic interaction 

with BCL2

Inner membrane

Spinal cord

Liver


CytC release

ATP depletion

BCL2

WT

SOD1



Mutant

SOD1


Aggregates of 

Mutant SOD1

Toxic mitochondrial

SOD1/BCL2 aggregates

Cell death

progressive cell death process that kills motor neurons 

and the surrounding cells over months and years.

Is this slow apoptotic process directly triggered by 

mutant SOD1? The gradual activation of an apoptotic 

pathway in ALS, and the anti-apoptotic influence of 

wild-type SOD1 

(REF. 87)

, indicate that mutant SOD1 is 

directly involved in the initiation of caspase activation 

and cell death. The observations that both wild-type and 

mutant SOD1 bind the anti-apoptotic BCL2 and, more 

importantly, in so doing trap BCL2 into detergent resist-

ant aggregates, are consistent with this view

76

 

(FIG. 3a,b)



When entrapped in inclusions, BCL2 could be directly 

rendered non-functional. To the extent that BCL2 functions 

by binding other pro- and anti-apoptotic proteins, such 

segregation might also indirectly block BCL2 function. 

Yet another possibility is that, on binding to mutant 

SOD1, BCL2 undergoes conformational modification 

and becomes toxic. Entrapment and depletion of BCL2 is 

supported by studies that show reduced levels of BCL2 

in SOD1 mice and patients with ALS. However, this is 

only pertinent to mutant SOD1 and does not explain the 

observed changes in BCL2 expression and function in 

non-SOD1 ALS cases.

Once the pro-apoptotic death signal has been gen-

erated, secondary events in the spinal cord amplify the 

disease process. These include the activation of microglia 

and T cells and the release of inflammatory factors and 

cytokines such as interleukin 1

β, COX2 and tumour 

necrosis factor-

α (TNFα)

88–91


. TNF

α, which activates 

CASP8

 in late stages of the disease in ALS transgenic 



mice

92,93


, and its receptor are part of a superfamily of 

proteins that includes Fas. Cultured embryonic motor 

neurons are selectively sensitive to Fas-induced apop-

tosis, which suggests that these inflammatory/pro-

apoptotic molecules mediate a motor neuron-specific 

apoptotic pathway and thereby selectively intoxicate 

motor neurons in ALS

92

. Another intriguing mechanism 



signalling neuroinflammation and toxicity is predicated 

on the accumulation of mutant but not wild-type SOD1 

in the endoplasmic reticulum

94

. Results from recent stud-



ies show that mutant SOD1 interacts with proteins such 

as chromogranin in the endoplasmic reticulum and is 

thereby retained within that compartment, to be traf-

ficked to the cell surface and secreted extracellularly

95



According to this provocative model, once secreted, 



mutant SOD1 activates microglial and astrocytic cells 

to provoke a neuroinflammatory response around the 

motor neuron

95

.



Mitochondrial dysfunction in ALS. Numerous 

studies have focused on the role of the mitochon-

drion in the pathogenesis of neurodegenerative 

diseases like ALS. Evidence of mitochondrial dysfunc-

tion in ALS patients includes clusters of abnormal mito-

chondria and morphological defects identified within 

mitochondria in skeletal muscles and intramuscular 

nerves in human SALS cases

96,97

. In such cases biochemical 



analyses have delineated defects in the respiratory 

chain complexes I and IV in muscle

98

 and elevated 



levels of mitochondrial calcium

99

 in muscle and spinal 



cord. In ALS mice, the main morphological evidence 

for mitochondrial pathology is the presence of vacuolated 

mitochondria (for example, in the G93A and G37R trans-

genic lines). In the G93A-SOD1 mice, mitochondrial 

Figure 3 | The mitochondrion as a target of mutant SOD1. Long considered a cytoplasmic protein, superoxide 

dismutase 1 (SOD1) also localizes to the mitochondrion; its precise localization (outer membrane, intermembrane 

space or matrix) is not fully defined. a | Mutant SOD1 forms insoluble aggregates that could directly damage the 

mitochondrion through: swelling, with expansion and increased permeability of the outer membrane and 

intermembrane space, leading to release of cytochrome c (CytC) and caspase activation; inhibition of the translocator 

outer membrane (TOM) complex, preventing mitochondrial protein import; and aberrant interactions with 

mitochondrial proteins such as BCL2. b | Aggregates of mutant SOD1 and BCL2 are found specifically in spinal cord but 

not liver mitochondria, a finding that might relate to the motor neuronal specificity of mutant SOD1 phenotypes. 

Codeposition of mutant SOD1 with BCL2 might eliminate BCL2 function, disrupt the mitochondrial membrane, 

deplete energy, deregulate mitochondrial bioenergetics and activate the mitochondrial apoptotic pathway. WT, wild-

type. Modified, with permission, from 

REF. 76


 

© (2004) Elsevier Science.

R E V I E W S

NATURE REVIEWS 

|

 

NEUROSCIENCE



 

 VOLUME 7 

|

 SEPTEMBER 2006 



|

 715


©

 

200



6

 

Nature Publishing Group

 

 

Nucleus



ER

Vesicle


Axon

Microtubules

Mitochondrion

Neurofilaments

Anterograde 

cargo


Synthesis and trafficking

of vesicles and proteins

Cell body

Dynein–dynactin complex

(retrograde motor)

Kinesin 


(anterograde motor)

Retrograde transport

Anterograde transport

Synapse


Uptake

Release


Neurotrophic 

factors


Retrograde 

cargo


Kinesins

A class of motor proteins that 

attach to microtubules and 

transport vesicles along the 

tubule.

vacuoles derived from a detachment between the 



inner and the outer membrane

100


 are evident early, and 

drastically increase in both number and volume as the 

disease progresses

101–103


.

In vitro and in vivo studies further define mitochon-

drial defects in ALS mice. The expression of mutant 

SOD1 in neuronal cell lines or in cultured primary 

motor neurons depolarizes mitochondria

104,105


, impairs 

calcium homeostasis

106

 and reduces ATP production



107

Similarly, G93A-SOD1 mice show reduced respiratory 



chain activity and reduced ATP synthesis; these increase 

in severity as disease progresses.

Whether mitochondrial dysfunction and pathology 

represent primary or secondary pathological events is 

unknown, as mitochondrial abnormalities can both 

result from and cause oxidative toxicity. In either 

circumstance, the pathological mitochondria can 

mediate cell death by releasing calcium into the 

cytoplasm, producing inadequate levels of ATP and 

triggering apoptosis 

(FIG. 3b)

. It is likely that mitochon-

drial function modifies the course of motor neuron 

degeneration. In ALS mice, inhibition of manganese super-

oxide dismutase (a mitochondrial dismutase) accelerates 

disease progression. Conversely, the disease is slowed 

by interventions that improve mitochondrial function 

— for example, creatine, which inhibits opening of the 

mitochondrial transition pore, and minocycline, which 

blocks the egress of cytochrome c

108,109

.

During the past five years, several observations have 



indicated that mutant SOD1 could directly damage mito-

chondria. It is evident that a fraction of SOD1 is localized 

in the mitochondrion

76,110–113

.

 

Studies of differentially 



targeted SOD1 in vitro reveal that mutant SOD1 more 

potently triggers cell death when localized to mitochon-

dria and, once so targeted, forms intra-mitochondrial 

protein aggregates

114

. Several interlocking mechanisms 



explain how mutant SOD1 impairs mitochondria from 

within 


(FIG. 3a)

. In G93A-SOD1 mice, mutant SOD1 

colocalizes with cytochrome c and the peroxisomal 

membranes associated with the vacuoles

100

. Therefore, 



mutant SOD1 could be involved in fusing the peroxi-

somes and the outer mitochondrial membrane, a process 

that could form pores in the mitochondrial membrane 

allowing the release of cytochrome c and the initiation of 

an apoptotic cascade. A second hypothesis is that mutant 

SOD1 is selectively recruited to the outer mitochondrial 

membrane, where it forms aggregates that slowly disrupt 

the protein translocation machinery (the translocator 

outer membrane (TOM) complex) of the mitochon-

drion and limits the import of functional proteins into 

the mitochondrion

112


. Two studies suggest that mutant 

SOD1 is selectively recruited to mitochondria only in 

affected tissues

76,112


. It has therefore been proposed that 

the selective loss of TOM function in spinal cord mito-

chondria might form the basis for the tissue specificity 

of ALS. Finally, mutant SOD1 aggregates could damage 

the mitochondrion through abnormal interaction with 

other mitochondrial proteins such as BCL2 

(REF. 76)

A recent paper challenged the notion of a toxic mito-



chondrial mutant SOD1, suggesting that mitochondrial 

load   ing of mutant SOD1 is simply the result of over-

expression of the mutant SOD1 that normally does not 

associate with mitochondria

115

.


Yüklə 386,38 Kb.

Dostları ilə paylaş:
1   2   3   4   5




Verilənlər bazası müəlliflik hüququ ilə müdafiə olunur ©azkurs.org 2025
rəhbərliyinə müraciət

gir | qeydiyyatdan keç
    Ana səhifə


yükləyin