(121—122):
121.
1)
+ + + +
4 4 4 4 4;
3)
+ +
;
c c c
2)
+ + +
6 6 6 6;
4)
+ + + +
.
a a a a a
M a s h q l a r
56
122.
1)
+
+
2
2
2 ;
m
m
m
5)
+ + +
14
4244
3
21 marta
3 3 ... 3;
2)
+
+
17
17
17 ;
ab
ab
ab
6)
+ + +
14
4244
3
17 marta
5 5 ... 5;
3)
-
+ -
(
2 ) (
2 );
c
d
c
d
7)
+ + +
1442443
marta
...
;
n
m m
m
4)
-
+
-
+
-
(3
) (3
) (3
);
b a
b a
b a
8)
+ + +
144244
3
marta
...
.
k
b b
b
Ko‘paytmani daraja shaklida yozing
(123—125):
123.
1)
× × × ×
2 2 2 2 2;
2)
× × × ×
1 1 1 1 1 ;
3 3 3 3 3
3)
×
×
3
3
3
4
4
4
;
4)
-
× -
× -
× -
( 2,7) ( 2,7) ( 2,7) ( 2,7).
124.
1)
× × × ×
;
x x x x x
3)
×
×
(2 ) (2 ) (2 );
a
a
a
2)
× × × ×
;
m m m m m
4)
-
× -
× -
× -
( 3 ) ( 3 ) ( 3 ) ( 3 ).
b
b
b
b
125.
1)
-
×
-
×
-
(
) (
) (
);
x y
x y
x y
3)
×
3
3
2
2
;
x
x
2)
+ ×
+
(
) (
);
a b
a b
4)
× × × ×
.
m m m m m
n n n n n
Ko‘paytmaning daraja shaklidagi yozuvidan foydalanib,
ifodani soddalashtiring
(126
—
128):
126.
1) 2·2·2·15;
3) 5·5·8·8·8·2·2;
2) 4·4·4·4·21;
4) 6·6·7·7·3·3·3.
127.
1) 1,2·1,2·2·2·5·5;
2) 0,5·0,5·0,5·2·2·4·4;
3)
×
× × × ×
1 1 1 1
7 7 7 7
0,3 0,3
;
4)
× × ×
×
2 2 2
3 3 3
2,3 2,3.
128.
1) 9·9·9·
a·a·a
;
3)
-
×
-
× ×
(
) (
)
;
x x x
y y y
x y
x y
2)
x·x·x·x
·3·3;
4)
-
×
-
×
-
× ×
(8
) (8
) (8
)
.
a a
b b
a b
a b
a b
Ifodani soddalashtiring
(129–130):
129.
1)
p
·
p · p · p
+
q ·q
;
3)
a · a
+
a · a
+
a · a
;
2)
a · a
+
b · b · b · b
;
4)
x · x · x
+
x · x · x
.
57
130.
1)
× + × + + ×
144424443
marta
...
;
k
c c c c
c c
3)
× × × + × × ×
14243 14243
marta
marta
...
... ;
n
m
a a
a b b
b
2)
× × + × × + + × ×
1444442444443
marta
...
;
n
a a a a a a
a a a
4)
× × × + × × ×
14243 14243
marta
17 marta
5 5 ... 5
... .
k
a a
a
131.
Ifodani o‘qing, darajaning asosini, daraja ko‘rsatkichini
ayting:
1) 3
2
;
3)
-
41
2
9
;
5)
+
15
(4
) ;
m n
2)
3
3
8
1
;
4)
-
39
( 1,2) ;
6)
7
2
3
.
a
b
Hisoblang
(132
—
139)
:
132.
1) 2
3
;
2) 3
2
;
3) 4
4
;
4) 5
3
.
133.
1) 1
5
;
2) (
-
1)
7
;
3) 0
15
;
4) 0
5
.
134.
1)
3
2
3
;
2)
2
3
5
;
3)
2
2
7
1
;
4)
3
1
3
2
.
135.
1) (2,5)
2
; 2) (1,7)
2
; 3) (
-
0,2)
3
; 4) (
-
0,2)
4
.
136.
1) (
-
5)
3
; 2)
-
5
3
;
3)
-
2
1
4
;
2
4)
-
2
1
4
.
2
137.
1)
-
4
5
( 0, 2)
(0,1)
;
2)
-
3
4
(0,3)
( 0,1)
;
3)
2
2
(3, 2)
(1,6)
;
4)
2
2
(2, 6)
(1,3)
.
138.
1) 2 · (
-
3)
2
;
2)
-
5 · (
-
2)
3
; 3)
- × -
2
1
2
( 4) ;
4)
- × -
2
2
3
( 3) .
139.
1)
-
× -
2
3
5
( 5)
;
2)
-
× -
3
2
3
( 3)
;
3)
- -
×
2
3
( 3) 2 ;
4)
- -
× -
2
3
( 3) ( 2) .
140.
-
-
-
2
2
3
; (
) ; (
)
x
x
x
ifodaning qiymatini
=
-
1
2
1 ;
5
x
da toping.
58
141.
x
2
ifodaning qiymatini
x
ning jadvalda keltirilgan qiymatlari
uchun hisoblang:
0
1
-
1
2
-
2
3
-
3
4
-
4
5
-
5
6
-
6
142.
x
3
ifodaning qiymatini
x
ning jadvalda ko‘rsatilgan qiy-
matlari uchun hisoblang:
0
1
-
1
2
-
2
3
-
3
4
-
4
5
-
5
6
-
6
143.
Quyidagi da’volarning qaysi biri to‘g‘ri, qaysi biri no-
to‘g‘ri? Sababini tushuntiring. Da’vo noto‘g‘ri deb ayt-
sangiz, uni rad etuvchi misol toping.
1) ikkita sonning kvadratlari teng bo‘lsa, bu sonlarning
o‘zlari ham teng;
2) ikkita sonning kublari teng bo‘lsa, bu sonlarning o‘z-
lari ham teng;
3) agar manfiy songa uning kvadrati qo‘shilsa, musbat
son hosil bo‘ladi;
4) agar manfiy sondan uning kvadrati ayirilsa, manfiy
son hosil bo‘ladi;
5) agar musbat sondan uning kvadrati ayirilsa, musbat
son hosil bo‘ladi.
Quyidagi da’volarning qaysi biri to‘g‘ri, qaysi biri no to‘g‘-
ri? Sababini tushuntiring. Mos misollar tuzing
(144–145):
144.
1) natural sonning kvadrati ixtiyoriy raqam bilan tugashi
mumkin;
2) natural sonning kubi ixtiyoriy raqam bilan tugashi
mumkin.
145.
1) natural sonning to‘rtinchi darajasi faqat 0; 1; 5; 6 ra-
qamlaridan biri bilan tugashi mumkin.
2) natural sonning beshinchi darajasi shu son qaysi ra-
qam bilan tugagan bo‘lsa, o‘sha raqam bilan tugaydi.
x
x
2
x
x
3
59
10-
Natural ko‘rsatkichli darajaning xossalari
Darajaga ko‘tarish bir nechta muhim xossalarga ega.
1 - x o s s a .
+
×
=
.
m
n
m n
a
a
a
Bir xil asosli darajalarni ko‘paytirishda asos o‘zgarmasdan
qoladi, daraja ko‘rsatkichlari esa qo‘shiladi.
Natural ko‘rsatkichli darajaning ta’rifiga ko‘ra
×
=
×
× × ×
=
1424
3
2
3
2 marta 3 marta
2 2
(2 2) (2 2 2)
×
=
× × × × ´
× × × ×
=
1442443 1442443
marta
marta
(
... ) (
... )
m
n
m
n
a a
a a a
a
a a a
a
ko‘paytirishning guruhlash qonuniga ko‘ra
= × × × × =
14243
5 marta
2 2 2 2 2
+
= × × × × =
144244
3
(
) marta
...
m n
a a a
a
natural ko‘rsatkichli darajaning ta’rifiga ko‘ra
= 2
5
.
=
a
m
+
n
.
Shunday qilib,
2
2
· 2
3
= 2
2+3
.
a
m
·
a
n
=
a
m
+
n
.
2- xossa.
-
=
>
¹
:
,
,
0
m
n
m n
a
a
a
m n a
.
Bir xil asosli darajalarni bo‘lishda asos o‘zgarmasdan
qoladi, daraja ko‘rsatkichlari esa ayiriladi
.
Shartga ko‘ra
5 > 3.
m
>
n
,
a
¹
0.
Darajaning birinchi xossasiga ko‘ra
2
5
–
3
· 2
3
= 2
5
.
a
m – n
·
a
n
=
a
m
.
Shuning uchun
2
5
–
3
= 2
5
: 2
3
.
a
m – n
=
a
m
:
a
n
.
60
Shunday qilib,
2
5
: 2
3
= 2
5
–
3
.
a
m
:
a
n
=
a
m – n
,
m
>
n
,
a
¹
0.
=
¹
1,
0
n
n
a
a
a
ekanligini ta’kidlaymiz.
3- xossa.
=
(
)
m n
mn
a
a
.
Darajani darajaga ko‘tarishda asos o‘zgarmasdan qoladi,
daraja ko‘rsatkichlar esa o‘zaro ko‘paytiriladi.
Natural ko‘rsatkichli darajaning ta’rifiga ko‘ra
=
×
=
3 2
3
3
(2 )
2 2
=
×
×
× ×
=
144424443
marta
(
)
...
m n
m
m
m
m
n
a
a
a
a
a
darajaning birinchi xossasiga ko‘ra
= 2
3 + 3
=
+ + +
=
=
64748
...
marta
m m
m
n
a
ko‘paytirishning ta’rifiga ko‘ra
= 2
3 · 2
.
=
a
mn
.
Shunday qilib,
(2
3
)
2
= 2
3 · 2
.
(
a
m
)
n
=
a
mn
.
4- xossa.
=
( )
n
n n
ab
a b
.
Ko‘paytmani darajaga ko‘tarishda har bir ko‘paytuvchi
shu darajaga ko‘tariladi.
×
=
× × × × × =
144424443
3
3 marta
(2 3)
(2 3) (2 3) (2 3)
=
=
1442443
marta
( )
( )( )...( )
n
n
ab
ab ab
ab
ko‘paytirishning guruhlash va o‘rin almashtirish qonuniga ko‘ra
=
× × × × ×
=
1424
3 1424
3
3 marta
3 marta
(2 2 2) (3 3 3)
=
× × ×
× × ×
=
14243 14243
marta
marta
(
... )(
... )
n
n
a a
a b b
b
natural ko‘rsatkichli darajaning ta’rifiga ko‘ra
=
2
3
· 3
3
.
=
a
n
·
b
n
.
Shunday qilib,
(2·3)
3
=
2
3
· 3
3
.
(
ab
)
n
=
a
n
b
n
.
61
5- xossa.
=
¹
;
0
n
n
n
a
a
b
b
b
.
Kasrni darajaga ko‘tarishda uning surat va maxraji xuddi
shu darajaga ko‘tariladi.
Natural ko‘rsatkichli darajaning ta’rifiga ko‘ra
=
× ×
=
14243
3
2
2 2 2
3
3 3 3
3 marta
=
×
=
14243
marta
...
n
a
a a
a
b
b b
b
n
kasrlarni ko‘paytirish qoidasiga ko‘ra
× ×
=
=
× ×
6474
8
123
3 marta
3 marta
2 2 2
3 3 3
×
×
=
=
×
×
64748
14243
marta
n marta
...
...
n
a a
a
b b
b
natural ko‘rsatkichli darajaning ta’rifiga ko‘ra
=
3
3
2
3
.
=
n
n
a
b
.
Shunday qilib,
=
3
3
3
2
2
3
3
.
=
¹
,
0
n
n
n
a
a
b
b
b
.
1- masala.
Hisoblang:
×
×
× ×
7
3
4
6
4
11 7 3
11 7 3
.
-
-
×
×
× ×
=
×
× = ×
=
7
3
4
7 6
3 1
6
4
11 7 3
11 7 3
11
7
1 11 49 539.
2- masala.
Yorug‘likning tarqalish tezligi 3·10
8
m/s ga ya-
qin, Yerdan Quyoshgacha bo‘lgan o‘rtacha masofa 1,5 · 10
11
m.
Yorug‘lik nuri Quyoshdan Yergacha bo‘lgan masofani qancha
vaqtda bosib o‘tadi?
Tekis harakatda bosib o‘tilgan yo‘lning
s
=
vt
formulasiga
asosan:
1,5 · 10
11
=
3 ·10
8
·
t
,
bu yerdan
×
×
=
=
×
=
11
3
8
1,5 10
3 10
0,5 10
500
t
(s).
Javob: 500 s = 8 min 20 s.
·
:
(
)
(
)
·
m n
mn
n
n
n
n
n
n
m
n
m n
m
n
m n
a
a
b
b
a
a
a
a
a
a
a
a
ab
a
b
+
-
=
=
=
=
=
|