4. Conclusion.
We have demonstrated an 86-km compensated optical link using an urban telecom network
with a frequency instability of 1.3×10
-15
at 1 s and below 10
-18
after one day of integration time.
These results were obtained due to the use of two slightly different modulation frequencies for the
two different propagation directions, the scrambling of the light polarization state and the
compensation of the fiber chromatic dispersion. The ultimate limitation of the compensator itself is
reached and can not be overcome easily. The stability of the present system enables comparison of
the best frequency standards, both in the microwave and optical region, over distances of up to
100 km. For longer distances, attenuation along the fiber is a crucial limitation. Optical amplifiers,
which limit the frequency instability at a level slightly below 10
-14
at 1 GHz, have a negligible
effect at 10 GHz and can be used to recover a sufficient signal to noise ratio for distances up to
about 200 km. For longer spans, an all optical compensation system is more promising. Modern
dispersion shifted fibers with lower PMD values allow even better performance and can potentially
extend the link beyond 200 km.
Acknowledgments
We acknowledge funding support from the Ministère de la Recherche and European Space
Agency/ESOC.
References
[1] A. Bauch, J. Achkar, S. Bize, D. Calonico, R. Dach, R. Hlavac, L. Lorini, T. Parker, G. Petit, D.
Piester, K. Szymaniec, P. Uhrich, “Comparison between frequency standards in Europe and the
USA at the 10
-15
uncertainty level”, Metrologia, 43, 109-120 (2006).
[2] C. Vian, P. Rosenbusch, H. Marion, S. Bize, L. Cacciapuoti, S. Zhang, M. Abgrall, D.
Chambon, I. Maksimovic, P. Laurent, G. Santarelli, A. Clairon, A. Luiten, M. Tobar and C.
Salomon, “BNM-SYRTE fountains: recent results” IEEE Transactions on Instrumentation and
Measurement, 54, 833-836 (2005).
[3] S. Weyers, B. Lipphardt, and H. Schnatz, “Reaching the quantum limit in a fountain clock using
a microwave oscillator phase locked to an ultrastable laser”, Phys. Rev. A, 79, 031803R (2009).
[4] J. P. Uzan, ”The fundamental constants and their variation: observational and theoretical status”,
Rev. Mod. Phys. 75, 403-455 (2003).
[5] S. G. Karshenboim, “Fundamental physical constants: looking from different angles”, Can. J.
Phys., 83, 767 (2005).
[6] V. V. Flambaum, “Enhanced effect of temporal variation of the fine-structure constant in
diatomic molecules”, Phys. Rev. D, 69, 115006 (2004).
[7] A. Amy-Klein, A. Goncharov, C. Daussy, C. Grain, O. Lopez, G. Santarelli, C Chardonnet,
"Absolute frequency measurement in the 28-THz spectral region with a femtosecond laser comb
and a long-distance optical link to a primary standard", Appl. Phys. B 78, 25-30 (2004).
[8] F. Narbonneau, M. Lours, S. Bize, A. Clairon, G. Santarelli, O. Lopez, C. Daussy, A. Amy-
Klein, C. Chardonnet, “High resolution frequency standard dissemination via optical fiber
metropolitan network”, Rev. Sci. Instrum., 77, 064701 (2006).
[9] M. Calhoun, S. Huang, and R. L. Tjoelker, “Stable Photonic Links for Frequency and Time
Transfer in the Deep-Space Network and Antenna Arrays”, Proc. of the IEEE, Special Issue on
Technical Advances in Deep Space Communications & Tracking, 95 , 1931-1946 (2007).
[10] S. M. Foreman, K. W. Holman, D. D. Hudson, D. J. Jones, and J. Ye, “Remote transfer of
ultrastable frequency references via fiber networks”, Rev. Sci. Instrum., 78, 021101 (2007)
[11] O. Lopez, A. Amy-Klein, C. Daussy, Ch. Chardonnet, F. Narbonneau, M. Lours, and G.
Santarelli, “86-km optical link with a resolution of 2×10
-18
for RF frequency transfer”, Eur.
Phys. J. D, 48, 35-41 (2008).
[12] N. R. Newbury, P. A. Williams, W. C. Swann, “Coherent transfer of an optical carrier over
251 km”, Opt. Lett., 32, 3056 (2007). See also P. A. Williams, W. C. Swann, and N. R.
Newbury, “High-stability transfer of an optical frequency over long fiber-optic links”, J. Opt.
Soc. Am. B, 25, 1284 (2008).
[13] M. Musha, F. Hong, K. Nakagawa, and K. Ueda, “Coherent optical frequency transfer over
50-km physical distance using a 120-km-long installed telecom fiber network”, Opt. Express
16, 16459 (2008)
[14] H. Jiang, F. Kéfélian, S. Crane, O. Lopez, M. Lours, J. Millo, D. Holleville, P. Lemonde, Ch.
Chardonnet, A. Amy-Klein, G. Santarelli, “Long-distance frequency transfer over an urban
fiber link using optical phase stabilization”, J. Opt. Soc. Am. B, 25, 2029 (2008) and F.
Kéfélian, O. Lopez, H. Jiang, Ch. Chardonnet, A. Amy-Klein and G. Santarelli, “High-
resolution optical frequency dissemination on a telecommunication network with data traffic”,
Opt. Lett, 34, 1573-1575 (2009).
[15] G. Grosche, O. Terra, K. Predehl, R. Holzwarth, B. Lipphardt, F. Vogt, U. Sterr, and H.
Schnatz, “Optical frequency transfer via 146 km fiber link with 10
-19
relative accuracy”, Opt.
Lett., 34, 2270-2272 (2009).
[16] M. Fujieda, M. Kumagai, T. Gotoh, M. Hosokawa, "Ultrastable Frequency Dissemination via
Optical Fiber at NICT", IEEE Transactions on Instrumentation and Measurement, 58, 1223-
1228 (2009) and M. Kumagai, M. Fujieda, S. Nagano, and M. Hosokawa, "Stable radio
frequency transfer in 114 km urban optical fiber link," Opt. Lett. 34, 2949-2951 (2009)
[17] B. Shillue, S. AlBanna and L. D'Addario, “Transmission of low phase noise, low phase drift
millimeter-wavelength references by a stabilized fiber distribution system”, Proc. IEEE Int.
Top. Meet. Microw. Photon. (MWP 2004), 201-204, (2004).
[18] R. Wilcox, J. M. Byrd, L. Doolittle, G. Huang, and J. W. Staples, "Stable transmission of
radio frequency signals on fiber links using interferometric delay sensing," Opt. Lett. 34,
3050-3052 (2009)
[19] G. D. Rovera, G. Santarelli, and A. Clairon, "A frequency synthesis chain for the atomic
fountain", IEEE Trans on Ultra. Ferro. Elec. Freq. Contr., 43, 354-358 (1996).
[20] D. Chambon, M. Lours, F. Narbonneau, M E. Tobar, A. Clairon and G. Santarelli “Design and
realization of a flywheel oscillator for advanced time and frequency metrology”, Rev. Sci.
Instr., 76, 094704 (2005).
[21] Pengbo Shen, N. J. Gomes, W. P. Shillue, S. Albanna, "The Temporal Drift Due to
Polarization Noise in a Photonic Phase Reference Distribution System", Journal of Lightwave
Technology 26, 2754-2763 (2008)
[22] D. Eliyahu, D. Seidel, L. Maleki, "RF Amplitude and Phase-Noise Reduction of an Optical
Link and an Opto-Electronic Oscillator," IEEE Transactions on Microwave Theory and
Techniques, 56, 449-456 (2008).
[23] G. Cibiel, M. Régis, E. Tournier and O. Llopis, "AM noise impact on low level phase noise
measurements," IEEE Transactions on Ultrasonics, Ferroelectrics, and frequency control 49,
784-788 (2002); see also L. M. Nelson and F.L. Walls, "Environmental effects in mixers and
frequency distribution systems," Proceedings of IEEE Frequency Control Symposium, p 831-
837 (1992), DOI: 10.1109/FREQ.1992.269954, (1992).
|