Foydalanilgan adabiyotlar ro’yhati
1. O’zbekiston
Respublikasi
Prezidentining
farmoni.
O’zbekiston
Respublikasini yanada rivojlantirish bo’yicha Harakatlar strategiyasi to’g’risida.
2017 yil.
2. Dinh H. T. et al. A survey of mobile cloud computing: architecture,
applications, and approaches //Wireless communications and mobile computing. –
2013. – Т. 13. – №. 18. – С. 1587-1611.
3. Krutz R. L., Vines R. D. Cloud security: A comprehensive guide to secure
cloud computing. – Wiley Publishing, 2010.
4. Tsai W. T., Sun X., Balasooriya J. Service-oriented cloud computing
architecture //2010 seventh international conference on information technology:
new generations. – IEEE, 2010. – С. 684-689.
5. Zissis D., Lekkas D. Addressing cloud computing security issues //Future
Generation computer systems. – 2012. – Т. 28. – №. 3. – С. 583-592.
6. Subashini S., Kavitha V. A survey on security issues in service delivery
models of cloud computing //Journal of network and computer applications. –
2011. – Т. 34. – №. 1. – С. 1-11.
7. Jensen M. et al. On technical security issues in cloud computing //2009
IEEE International Conference on Cloud Computing. – Ieee, 2009. – С. 109-116.
8. Feng D. G. et al. Study on cloud computing security //Journal of software.
– 2011. – Т. 22. – №. 1. – С. 71-83.
9. Mell P. et al. The NIST definition of cloud computing. – 2011.
10.
Popović K., Hocenski Ž. Cloud computing security issues and
challenges //The 33rd International Convention MIPRO. – IEEE, 2010. – С. 344-
349.
11.
Van Dijk M., Juels A. On the impossibility of cryptography alone for
privacy-preserving cloud computing //HotSec. – 2010. – Т. 10. – С. 1-8.
36
Ilova
def gcd(a, b):
while a != 0:
a, b = b % a, a
return b
def findModInverse(a, m):
if gcd(a, m) != 1:
return None
u1, u2, u3 = 1, 0, a
v1, v2, v3 = 0, 1, m
while v3 != 0:
q = u3 // v3
v1, v2, v3, u1, u2, u3 = (u1 - q * v1), (u2 - q * v2), (u3 - q *v3), v1, v2, v3
return u1 % m
import random
def rabinMiller(num):
s = num - 1
t = 0
while s % 2 == 0:
s = s // 2
t += 1
for trials in range(5):
a = random.randrange(2, num - 1)
v = pow(a, s, num)
if v != 1:
i = 0
while v != (num - 1):
if i == t - 1:
return False
else:
i = i + 1
v = (v ** 2) % num
return True
def isPrime(num):
if (num < 2):
return False
lowPrimes = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59,
61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127,
131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191,
193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257,
263, 269, 271, 277, 281, 283, 293, 307, 311, 313, 317, 331,
337, 347, 349, 353, 359, 367, 373, 379, 383, 389, 397, 401,
409, 419, 421, 431, 433, 439, 443, 449, 457, 461, 463, 467,
479, 487, 491, 499, 503, 509, 521, 523, 541, 547, 557, 563,
569, 571, 577, 587, 593, 599, 601, 607, 613, 617, 619, 631,
641, 643, 647, 653, 659, 661, 673, 677, 683, 691, 701, 709,
719, 727, 733, 739, 743, 751, 757, 761, 769, 773, 787, 797,
809, 811, 821, 823, 827, 829, 839, 853, 857, 859, 863, 877,
881, 883, 887, 907, 911, 919, 929, 937, 941, 947, 953, 967,
971, 977, 983, 991, 997]
if num in lowPrimes:
return True
for prime in lowPrimes:
if (num % prime) == 0:
return False
return rabinMiller(num)
37
def generateLargePrime(keysize = 1024):
while True:
num = random.randrange(2 ** (keysize - 1), 2 ** (keysize))
if isPrime(num):
return num
if __name__ == '__main__':
num = generateLargePrime()
print('Prime number:', num)
print('isPrime:', isPrime(num))
import random, sys, os
import rabin_miller as rabinMiller, cryptomath_module as cryptoMath
def main():
print('Making key files...')
makeKeyFiles('rsa', 1024)
print('Key files generation successful.')
def generateKey(keySize):
print('Generating prime p...')
p = rabinMiller.generateLargePrime(keySize)
print('Generating prime q...')
q = rabinMiller.generateLargePrime(keySize)
n = p * q
print('Generating e that is relatively prime to (p - 1) * (q - 1)...')
while True:
e = random.randrange(2 ** (keySize - 1), 2 ** (keySize))
if cryptoMath.gcd(e, (p - 1) * (q - 1)) == 1:
break
print('Calculating d that is mod inverse of e...')
d = cryptoMath.findModInverse(e, (p - 1) * (q - 1))
publicKey = (n, e)
privateKey = (n, d)
return (publicKey, privateKey)
def makeKeyFiles(name, keySize):
if os.path.exists('%s_pubkey.txt' % (name)) or os.path.exists('%s_privkey.txt' % (name)):
print('\nWARNING:')
print('"%s_pubkey.txt" or "%s_privkey.txt" already exists. \nUse a different name or delete these
files and re-run this program.' % (name, name))
sys.exit()
publicKey, privateKey = generateKey(keySize)
print('\nWriting public key to file %s_pubkey.txt...' % name)
with open('%s_pubkey.txt' % name, 'w') as fo:
fo.write('%s,%s,%s' % (keySize, publicKey[0], publicKey[1]))
print('Writing private key to file %s_privkey.txt...' % name)
with open('%s_privkey.txt' % name, 'w') as fo:
fo.write('%s,%s,%s' % (keySize, privateKey[0], privateKey[1]))
if __name__ == '__main__':
main()
Dostları ilə paylaş: |