11. Norton JW, Corbett JJ. Visual perceptual abnormal-
ities: hallucinations and illusions. Semin Neurol
2000; 20(1), 111–121.
12. Henon H, Lebert F, Durieu I, et al. Confusional
state in stroke: relation to preexisting dementia, pa-
tient characteristics, and outcome. Stroke 1999; 30(4),
773–779.
13. Behrmann M, Geng JJ, Shomstein S. Parietal cortex
and attention. Curr Opin Neurobiol 2004; 14(2),
212–217.
14. Gibb WR, Gorsuch AN, Lees AJ, et al. Reversible
coma in Wernicke’s encephalopathy. Postgrad Med J
1985; 61(717), 607–610.
15. Hazell AS, Todd KG, Butterworth RF. Mechanisms
of neuronal cell death in Wernicke’s encephalopa-
thy. Metab Brain Dis 1998; 13(2), 97–122.
16. McEntee WJ. Wernicke’s encephalopathy: an exci-
totoxicity hypothesis. Metab Brain Dis 1997; 12(3),
183–192.
17. Chin K, Ohi M, Fukui M, et al. Inhibitory effect of
an intellectual task on breathing after voluntary
hyperventilation. J Appl Physiol 1996; 81(3), 1379–
1387.
18. Simon RP. Neurogenic pulmonary edema. Neurol
Clin 1993; 11(2), 309–323.
19. Fontes RB, Aguiar PH, Zanetti MV, et al. Acute
neurogenic pulmonary edema: case reports and liter-
ature review. J Neurosurg Anesthesiol 2003; 15(2),
144–150.
20. Swenson ER. Metabolic acidosis. Respir Care 2001;
46(4), 342–353.
21. Zehtabchi S, Sinert R, Baron BJ, et al. Does ethanol
explain the acidosis commonly seen in ethanol-
intoxicated patients? Clin Toxicol (Phila) 2005;
43(3), 161–166.
22. Depalo VA, Mailer K, Yoburn D, et al. Lactic acidosis:
lactic acidosis associated with metformin use in treat-
ment of type 2 diabetes mellitus. Geriatrics 2005;
60(11), 36–41.
23. Purssell RA, Lynd LD, Koga Y. The use of the osmole
gap as a screening test for the presence of exogenous
substances. Toxicol Rev 2004; 23(3), 189–202.
24. Megarbane B, Borron SW, Baud FJ. Current recom-
mendations for treatment of severe toxic alcohol poi-
sonings. Intensive Care Med 2005; 31(2), 189–195.
25. Alfred S, Coleman P, Harris D, et al. Delayed
neurologic sequelae resulting from epidemic dieth-
ylene glycol poisoning. Clin Toxicol (Phila) 2005;
43(3), 155–159.
26. Foster GT, Vaziri ND, Sassoon CS. Respiratory
alkalosis. Respir Care 2001; 46(4), 384–391.
27. Dale C, Aulaqi AA, Baker J, et al. Assessment of a
point-of-care test for paracetamol and salicylate in
blood. QJM 2005; 98(2), 113–118.
28. Koulouris Z, Tierney MG, Jones G. Metabolic acido-
sis and coma following a severe acetaminophen
284
Plum and Posner’s Diagnosis of Stupor and Coma
overdose. Ann Pharmacother 1999; 33(11), 1191–
1194.
29. Greene SL, Dargan PI, Jones AL. Acute poisoning:
understanding 90% of cases in a nutshell. Postgrad
Med J 2005; 81(954), 204–216.
30. Dargan PI, Wallace CI, Jones AL. An evidence based
flowchart to guide the management of acute salicylate
(aspirin) overdose. Emerg Med J 2002; 19(3), 206–
209.
31. Rivers EP, McIntyre L, Morro DC, et al. Early and
innovative interventions for severe sepsis and septic
shock: taking advantage of a window of opportunity.
CMAJ 2005; 173(9), 1054–1065.
32. Khanna A, Kurtzman NA. Metabolic alkalosis.
Respir Care 2001; 46(4), 354–365.
33. Bulger RJ, Schrier RW, Arend WP, et al. Spinal-fluid
acidosis and the diagnosis of pulmonary encephalop-
athy. N Engl J Med 1966; 274(8), 433–437.
34. Posner JB, Swanson AG, Plum F. Acid-base balance in
cerebrospinal fluid. Arch Neurol 1965; 12, 479–496.
35. Holland AE, Wilson JW, Kotsimbos TC, et al. Meta-
bolic alkalosis contributes to acute hypercapnic respi-
ratory failure in adult cystic fibrosis. Chest 2003; 124(2),
490–493.
36. Epstein SK, Singh N. Respiratory acidosis. Respir
Care 2001; 46(4), 366–383.
37. Andrefsky JC, Frank JI, Chyatte D. The ciliospinal
reflex in pentobarbital coma. J Neurosurg 1999;
90(4), 644–646.
38. Larson MD, Muhiudeen I. Pupillometric analysis of
the ’absent light reflex.’ Arch Neurol 1995; 52(4),
369–372.
39. Simon RP. Forced downward ocular deviation. Oc-
currence during oculovestibular testing in sedative
drug-induced coma. Arch Neurol 1978; 35(7), 456–
458.
40. Cadranel JF, Lebiez E, Di Martino V, et al. Focal
neurological signs in hepatic encephalopathy in cir-
rhotic patients: an underestimated entity? Am J Gas-
troenterol 2001; 96(2), 515–518.
41. Huff JS. Stroke mimics and chameleons. Emerg
Med Clin North Am 2002; 20(3), 583–595.
42. Adams RD, Foley JM. The neurological disorder as-
sociated with liver disease. Res Publ Assoc Res Nerv
Ment Dis 1953; 32, 198–237.
43. Rio J, Montalban J, Pujadas F, et al. Asterixis asso-
ciated with anatomic cerebral lesions: a study of 45
cases. Acta Neurol Scand 1995; 91(5), 377–381.
44. Young RR, Shahani BT. Asterixis: one type of
negative myoclonus. Adv Neurol 1986; 43, 137–156.
45. Leavitt S, Tyler HR. Studies in asterixis. I. Arch
Neurol 1964; 10, 360–368.
46. Noda S, Ito H, Umezaki H, et al. Hip flexion-
abduction to elicit asterixis in unresponsive patients.
Ann Neurol 1985; 18(1), 96–97.
47. Shibasaki H. Pathophysiology of negative myoclonus
and asterixis. Adv Neurol 1995; 67, 199–209.
48. Shibasaki H, Hallett M. Electrophysiological studies
of myoclonus. Muscle Nerve 2005; 31(2), 157–174.
49. Henry JA, Woodruff GH. A diagnostic sign in states
of apparent unconsciousness. Lancet 1978; 2(8096),
920–921.
50. Rosenberg ML. The eyes in hysterical states of un-
consciousness. J Clin Neuroophthalmol 1982; 2(4),
259–260.
51. Pellerin L, Magistretti PJ. Neuroenergetics: calling
upon astrocytes to satisfy hungry neurons. Neuro-
scientist 2004; 10(1), 53–62.
52. Mulligan SJ, MacVicar BA. Calcium transients in
astrocyte endfeet cause cerebrovascular constrictions.
Nature 2004; 431(7005), 195–199.
53. Fillenz M. The role of lactate in brain metabolism.
Neurochem Int 2005; 47(6), 413–417.
54. Chen Y, Swanson RA. Astrocytes and brain injury.
J Cereb Blood Flow Metab 2003; 23(2), 137–149.
55. Ishii K, Sasaki M, Kitagaki H, et al. Regional difference
in cerebral blood flow and oxidative metabolism in
human cortex. J Nucl Med 1996; 37(7), 1086–1088.
56. Nybo L, Secher NH. Cerebral perturbations pro-
voked by prolonged exercise. Prog Neurobiol 2004;
72(4), 223–261.
57. Nair DG. About being BOLD. Brain Res Brain Res
Rev 2005; 50(2), 229–243.
58. Magistretti PJ, Pellerin L. Cellular mechanisms of
brain energy metabolism and their relevance to fun-
ctional brain imaging. Philos Trans R Soc Lond B
Biol Sci 1999; 354(1387), 1155–1163.
59. Iadecola C. Neurovascular regulation in the normal
brain and in Alzheimer’s disease. Nat Rev Neurosci
2004; 5(5), 347–360.
60. Hass WK, Hawkins RA, Ransohoff J. Reduction of
cerebral blood flow, glucose utilization, and oxidatvie
metabolism after bilateral reticular formation lesions.
Trans Am Neurol Assoc 1977; 102, 19–22.
61. Jones TH, Morawetz RB, Crowell RM, et al. Thresh-
olds of focal cerebral ischemia in awake monkeys.
J Neurosurg 1981; 54(6), 773–782.
62. Kraig RP, Petito CK, Plum F, et al. Hydrogen ions
kill brain at concentrations reached in ischemia.
J Cereb Blood Flow Metab 1987; 7(4), 379–386.
63. Clausen T, Khaldi A, Zauner A, et al. Cerebral acid-
base homeostasis after severe traumatic brain injury.
J Neurosurg 2005; 103(4), 597–607.
64. Zauner A, Daugherty WP, Bullock MR, et al. Brain
oxygenation and energy metabolism: part I-biological
function and pathophysiology. Neurosurgery 2002;
51(2), 289–301; discussion 302.
65. Banks WA. The source of cerebral insulin. Eur J
Pharmacol 2004; 490(1–3), 5–12.
66. Pellerin L. How astrocytes feed hungry neurons.
Mol Neurobiol 2005; 32(1), 59–72.
67. Gruetter R. Glycogen: the forgotten cerebral energy
store. J Neurosci Res 2003; 74(2), 179–183.
68. Brown AM. Brain glycogen re-awakened. J Neuro-
chem 2004; 89(3), 537–552.
69. Klein JP, Waxman SG. The brain in diabetes: mo-
lecular changes in neurons and their implications for
end-organ damage. Lancet Neurol 2003; 2(9), 548–
554.
70. Payne RS, Tseng MT, Schurr A. The glucose
paradox of cerebral ischemia: evidence for cortico-
sterone involvement. Brain Res 2003; 971(1), 9–17.
71. Cox DJ, Kovatchev BP, Gonder-Frederick LA, et al.
Relationships between hyperglycemia and cognitive
performance among adults with type 1 and type 2
diabetes. Diabetes Care 2005; 28(1), 71–77.
72. Baird TA, Parsons MW, Phanh T, et al. Persistent
poststroke hyperglycemia is independently associated
with infarct expansion and worse clinical outcome.
Stroke 2003; 34(9), 2208–2214.
Multifocal, Diffuse, and Metabolic Brain Diseases Causing Delirium, Stupor, or Coma
285
73. Rady MY, Johnson DJ, Patel BM, et al. Influence of
individual characteristics on outcome of glycemic con-
trol in intensive care unit patients with or without
diabetes mellitus. Mayo Clin Proc 2005; 80(12), 1558–
1567.
74. Schurr A, Payne RS, Miller JJ, et al. Preischemic
hyperglycemia-aggravated damage: evidence that lac-
tate utilization is beneficial and glucose-induced corti-
costerone release is detrimental. J Neurosci Res 2001;
66(5), 782–789.
75. Li PA, He QP, Csiszar K, et al. Does long-term
glucose infusion reduce brain damage after transient
cerebral ischemia? Brain Res 2001; 912(2), 203–205.
76. Jones K. Insulin coma therapy in schizophrenia. J R
Soc Med 2000; 93(3), 147–149.
77. Della Porta P, Maiolo AT, Negri VU. Cerebral blood
flow and metabolism in therapeutic insulin coma.
Metabolism 1964; 13, 131–140.
78. Dieguez G, Fernandez N, Garcia JL, et al. Role of
nitric oxide in the effects of hypoglycemia on the
cerebral circulation in awake goats. Eur J Pharmacol
1997; 330(2–3), 185–193.
79. Teves D, Videen TO, Cryer PE, et al. Activation of
human medial prefrontal cortex during autonomic
responses to hypoglycemia. Proc Natl Acad Sci U S A
2004; 101(16), 6217–6221.
80. Choi IY, Lee SP, Kim SG, et al. In vivo measure-
ments of brain glucose transport using the reversible
Michaelis-Menten model and simultaneous measure-
ments of cerebral blood flow changes during hypo-
glycemia. J Cereb Blood Flow Metab 2001; 21(6),
653–663.
81. Blackman JD, Towle VL, Sturis J, et al. Hypoglyce-
mic thresholds for cognitive dysfunction in IDDM.
Diabetes 1992; 41(3), 392–399.
82. Choi IY, Seaquist ER, Gruetter R. Effect of hypogly-
cemia on brain glycogen metabolism in vivo. J Neuro-
sci Res 2003; 72(1), 25–32.
83. Lubow JM, Pinon IG, Avogaro A, et al. Brain oxygen
utilization is unchanged by hypoglycemia in normal
humans: lactate, alanine, and leucine uptake are not
sufficient to offset energy deficit. Am J Physiol Endo-
crinol Metab 2006; 290, E149–153.
84. Auer RN. Hypoglycemic brain damage. Metab Brain
Dis 2004; 19(3–4), 169–175.
85. Ghajar JB, Gibson GE, Duffy TE. Regional acetyl-
choline metabolism in brain during acute hypogly-
cemia and recovery. J Neurochem 1985; 44(1), 94–
98.
86. Gorell JM, Dolkart PH, Ferrendelli JA. Regional
levels of glucose, amino acids, high energy phos-
phates, and cyclic nucleotides in the central nervous
system during hypoglycemic stupor and behavioral
recovery. J Neurochem 1976; 27(5), 1043–1049.
87. Ouyang YB, He QP, Li PA, et al. Is neuronal injury
caused by hypoglycemic coma of the necrotic or
apoptotic type? Neurochem Res 2000; 25(5), 661–
667.
88. Mishriki YY. Hypoglycemia-induced neurogenic-
type pulmonary edema: an underrecognized associ-
ation. Endocr Pract 2004; 10(5), 429–431.
89. Berbel-Garcia A, Porta-Etessam J, Martinez-Salio A,
et al. [Transient cerebral oedema associated to
hypoglycaemia]. Rev Neurol 2004; 39(11), 1030–
1033.
90. Jung SL, Kim BS, Lee KS, et al. Magnetic resonance
imaging and diffusion-weighted imaging changes af-
ter hypoglycemic coma. J Neuroimaging 2005; 15(2),
193–196.
91. Bando N, Watanabe K, Tomotake M, et al. Central
pontine myelinolysis associated with a hypoglycemic
coma in anorexia nervosa. Gen Hosp Psychiatry 2005;
27(5), 372–374.
92. Clarkson AN, Sutherland BA, Appleton I. The biology
and pathology of hypoxia-ischemia: an update. Arch
Immunol Ther Exp (Warsz) 2005; 53(3), 213–225.
93. Nelson LE, Guo TZ, Lu J, et al. The sedative compo-
nent of anesthesia is mediated by GABA(A) receptors
in an endogenous sleep pathway. Nat Neurosci 2002;
5(10), 979–984.
94. Mashour GA. Consciousness unbound: toward a
paradigm of general anesthesia. Anesthesiology 2004;
100(2), 428–433.
95. Mashour GA, Forman SA, Campagna JA. Mecha-
nisms of general anesthesia: from molecules to mind.
Best Pract Res Clin Anaesthesiol 2005; 19(3), 349–
364.
96. Campagna JA, Miller KW, Forman SA. Mechanisms
of actions of inhaled anesthetics. N Engl J Med
2003; 348(21), 2110–2124.
97. Rudolph U, Mohler H. Analysis of GABAA receptor
function and dissection of the pharmacology of ben-
zodiazepines and general anesthetics through mouse
genetics. Annu Rev Pharmacol Toxicol 2004; 44, 475–
498.
98. Langsjo JW, Maksimow A, Salmi E, et al. S-ketamine
anesthesia increases cerebral blood flow in excess of
the metabolic needs in humans. Anesthesiology 2005;
103(2), 258–268.
99. Doyle PW, Matta BF. Burst suppression or isoelec-
tric encephalogram for cerebral protection: evidence
from metabolic suppression studies. Br J Anaesth
1999; 83(4), 580–584.
100. Nilsson L, Siesjo BK. The effect of anesthetics upon
labile phosphates and upon extra- and intracellular
lactate, pyruvate and bicarbonate concentrations in
the rat brain. Acta Physiol Scand 1970; 80(2), 235–
248.
101. Kalviainen R, Eriksson K, Parviainen I. Refractory
generalised convulsive status epilepticus: a guide to
treatment. CNS Drugs 2005; 19(9), 759–768.
102. Elsersy H, Sheng H, Lynch JR, et al. Effects of
isoflurane versus fentanyl-nitrous oxide anesthesia on
long-term outcome from severe forebrain ischemia in
the rat. Anesthesiology 2004; 100(5), 1160–1166.
103. Bayona NA, Gelb AW, Jiang Z, et al. Propofol
neuroprotection in cerebral ischemia and its effects
on low-molecular-weight antioxidants and skilled
motor tasks. Anesthesiology 2004; 100(5), 1151–
1159.
104. Almaas R, Saugstad OD, Pleasure D, et al. Effect of
barbiturates on hydroxyl radicals, lipid peroxidation,
and hypoxic cell death in human NT2-N neurons.
Anesthesiology 2000; 92(3), 764–774.
105. Imaoka S, Osada M, Minamiyama Y, et al. Role of
phenobarbital-inducible cytochrome P450s as a source
of active oxygen species in DNA-oxidation. Cancer
Lett 2004; 203(2), 117–125.
106. Singh D, Kumar P, Majumdar S, et al. Effect of
phenobarbital on free radicals in neonates with hypoxic
286
Plum and Posner’s Diagnosis of Stupor and Coma
ischemic encephalopathy—a randomized controlled
trial. J Perinat Med 2004; 32(3), 278–281.
107. Vincent JL, Berre J. Primer on medical management
of severe brain injury. Crit Care Med 2005; 33(6),
1392–1399.
108. Auer RN, Siesjo BK. Biological differences between
ischemia, hypoglycemia, and epilepsy. Ann Neurol
1988; 24(6), 699–707.
109. Maramattom BV, Wijdicks EF. Postresuscitation
encephalopathy. Current views, management, and
prognostication. Neurologist 2005; 11(4), 234–243.
110. Hossmann KA. Reperfusion of the brain after global
ischemia: hemodynamic disturbances. Shock 1997;
8(2), 95–101; discussion 102–103.
111. del Zoppo GJ, Hallenbeck JM. Advances in the
vascular pathophysiology of ischemic stroke. Thromb
Res 2000; 98(3), 73–81.
112. Hai J, Lin Q, Li ST, et al. Chronic cerebral hypoper-
fusion and reperfusion injury of restoration of normal
perfusion pressure contributes to the neuropatholog-
ical changes in rat brain. Brain Res Mol Brain Res
2004; 126(2), 137–145.
113. White BC, Sullivan JM, DeGracia DJ, et al. Brain
ischemia and reperfusion: molecular mechanisms of
neuronal injury. J Neurol Sci 2000; 179(S1–2), 1–33.
114. Miyamoto O, Auer RN. Hypoxia, hyperoxia, ischemia,
and brain necrosis. Neurology 2000; 54(2), 362–371.
115. Taraszewska A, Zelman IB, Ogonowska W, et al. The
pattern of irreversible brain changes after cardiac
arrest in humans. Folia Neuropathol 2002; 40(3),
133–141.
116. Zola-Morgan S, Squire LR. Neuroanatomy of mem-
ory. Annu Rev Neurosci 1993; 16, 547–563.
117. Maulaz A, Piechowski-Jozwiak B, Michel P, et al.
Selecting patients for early stroke treatment with
penumbra images. Cerebrovasc Dis 2005; 20(Suppl
2), 19–24.
118. Schaller B, Graf R. Cerebral ischemia and reperfu-
sion: the pathophysiologic concept as a basis for clin-
ical therapy. J Cereb Blood Flow Metab 2004; 24(4),
351–371.
119. Sharp FR, Ran R, Lu A, et al. Hypoxic precondition-
ing protects against ischemic brain injury. NeuroRx
2004; 1(1), 26–35.
120. Trzepacz PT. Is there a final common neural pathway
in delirium? Focus on acetylcholine and dopamine.
Semin Clin Neuropsychiatry 2000; 5(2), 132–148.
121. Perry EK, Perry RH. Neurochemistry of conscious-
ness: cholinergic pathologies in the human brain.
Prog Brain Res 2004; 145, 287–299.
122. Tassonyi E, Charpantier E, Muller D, et al. The role
of nicotinic acetylcholine receptors in the mecha-
nisms of anesthesia. Brain Res Bull 2002; 57(2), 133–
150.
123. Han L, McCusker J, Cole M, et al. Use of medicat-
ions with anticholinergic effect predicts clinical sever-
ity of delirium symptoms in older medical inpatients.
Arch Intern Med 2001; 161(8), 1099–1105.
124. Schuck S, tue-Ferrer D, Kleinermans D, et al. Psy-
chomotor and cognitive effects of piribedil, a dopamine
agonist, in young healthy volunteers. Fundam Clin
Pharmacol 2002; 16(1), 57–65.
125. Tune LE, Bylsma FW. Benzodiazepine-induced and
anticholinergic-induced delirium in the elderly. Int
Psychogeriatr 1991; 3(2), 397–408.
126. Mouradian MD, Penovich PE. Spindle coma in benzo-
diazepine toxicity: case report. Clin Electroencepha-
logr 1985; 16(4), 213–218.
127. Ahboucha S, Pomier-Layrargues G, Butterworth
RF. Increased brain concentrations of endogenous
(non-benzodiazepine) GABA-A receptor ligands in
human hepatic encephalopathy. Metab Brain Dis
2004; 19(3–4), 241–251.
128. Lewis MC, Barnett SR. Postoperative delirium: the
tryptophan dysregulation model. Med Hypotheses
2004; 63(3), 402–406.
129. Flacker JM, Lipsitz LA. Neural mechanisms of
delirium: current hypotheses and evolving concepts.
J Gerontol [A] 1999; 54(6), B239-B246.
130. Van der Mast RC, Fekkes D. Serotonin and amino
acids: partners in delirium pathophysiology? Semin
Clin Neuropsychiatry 2000; 5(2), 125–131.
131. Markus CR, Jonkman LM, Lammers JH, et al. Even-
ing intake of alpha-lactalbumin increases plasma tryp-
tophan availability and improves morning alertness
and brain measures of attention. Am J Clin Nutr 2005;
81(5), 1026–1033.
132. Drugs that may cause psychiatric symptoms. Med
Lett Drugs Ther 2002; 44(1134), 59–62.
133. Catalano G, Catalano MC, Alberts VA. Famotidine-
associated delirium. A series of six cases. Psychoso-
matics 1996; 37(4), 349–355.
134. Preuss UW, Koller G, Bahlmann M, et al. No asso-
ciation between metabotropic glutamate receptors 7
and 8 (mGlur7 and mGlur8) gene polymorphisms and
withdrawal seizures and delirium tremens in alcohol-
dependent individuals. Alcohol Alcohol 2002; 37(2),
174–178.
135. Hawley RJ, Nemeroff CB, Bissette G, et al. Neuro-
chemical correlates of sympathetic activation during
severe alcohol withdrawal. Alcohol Clin Exp Res
1994; 18(6), 1312–1316.
136. Koguchi K, Nakatsuji Y, Abe K, et al. Wernicke’s en-
cephalopathy after glucose infusion. Neurology 2004;
62(3), 512.
137. Stiefel MF, Heuer GG, Smith MJ, et al. Cerebral
oxygenation following decompressive hemicraniect-
omy for the treatment of refractory intracranial
hypertension. J Neurosurg 2004; 101(2), 241–247.
138. Stiefel MF, Spiotta A, Gracias VH, et al. Reduced
mortality rate in patients with severe traumatic brain
injury treated with brain tissue oxygen monitoring.
J Neurosurg 2005; 103(5), 805–811.
139. Smythe PR, Samra SK. Monitors of cerebral oxygen-
ation. Anesthesiol Clin North America 2002; 20(2),
293–313.
140. Siggaard-Andersen O, Ulrich A, Gothgen IH. Clas-
ses of tissue hypoxia. Acta Anaesthesiol Scand Suppl
1995; 107, 137–142.
141. Wilson WC, Shapiro B. Perioperative hypoxia. The
clinical spectrum and current oxygen monitoring
methodology. Anesthesiol Clin North America 2001;
19(4), 769–812.
142. James PB, Calder IM. Anoxic asphyxia—a cause of
industrial fatalities: a review. J R Soc Med 1991;
84(8), 493–495.
143. Hossmann KA. The hypoxic brain. Insights from ische-
mia research. Adv Exp Med Biol 1999; 474, 155–169.
144. Kulik A, Trapp S, Ballanyi K. Ischemia but not anoxia
evokes vesicular and Ca(2þ)-independent glutamate
Multifocal, Diffuse, and Metabolic Brain Diseases Causing Delirium, Stupor, or Coma
287
release in the dorsal vagal complex in vitro. J Neuro-
physiol 2000; 83(5), 2905–2915.
145. Fleidervish IA, Gebhardt C, Astman N, et al.
Enhanced spontaneous transmitter release is the
earliest consequence of neocortical hypoxia that can
Dostları ilə paylaş: |