Matematik statistika tasodifiy hodisalar yoki jarayonlar haqida shu hodisalarni kuzatish yoki tajribalar natijasida olingan ma’lumotlar asosida umumiy xulosalar chiqaradigan matematik fandir. Bu xulosalar umumiylik xususiyatlariga ega bo‘lib, kuzatilayotgan tasodifiy holatlarning barchasiga taaluqlidir. Matematik statistika ehtimollar nazariyasiga tayangan holda, uning usullari va nazariy hulosalari asosida o‘rganilayotgan obyekt haqida xulosalar chiqaradi. Agarda ehtimollar nazariyasida biz o‘rganayotgan matematik model to‘la-to‘kis berilgan deb hisoblab, bu model bizni qiziqtirayotgan holatlarni o‘rgansak, matematik statistikada biz qandaydir tasodifiy hodisalar natijalaridan kelib chiqqan holda(bular ko‘pchilik hollarda sonlardan iborat bo‘ladi), tasodifiy jarayonlarning matematik modelini tuzishga harakat qilamiz.
Xulosa
Bizga ma’lumki ehtimollar nazariya va matematik statistika fani muhim rivojlanayotgan borayotgan fanlar jumlasidandir. Ayniqsa ehtimollar nazariyasining hayotga bo’lgan tadbiqlari bo’limi salohiyati va amaliy qo’llay bilishi jihatidan muhim ahamiyat kasb etadi va u juda ko’p tushunchalarni o’z ichiga oladi. Matematik ststistikaning ba’zi masalalari ehtimollar nazariyasi va matematik statistika fanini yaxshi o’zlashtirish, unga tegishli bo’lgan tushunchalar va turli masalalarni yechishga, ularni oson hal qilishga imkon beradi.
Bu kurs ishini tayyorlash davomida quyidagilarni o’rgandim:
Аbdushukurov А.А., Azlarov T.A., Djamirzayev A.A. Ehtimollarnazariyasi va matematik statistikadan misol va masalalar to’plami. Toshkent «Universitet», 2003.
Azlarov T.A., Abdushukurov A.A. Ehtimollar nazariyasi va matematikstatistikadan Inglizcha-ruscha-o’zbekcha lug’at. Toshkent: «Universitet», 2005.
Теория вероятностей и математическая статистика в задачах М.: 2003.
5. Gmurman V.E. Ehtimollar nazariyasi va matematik statistika. Ruscha to’ldirilgan 4-nashridan tarj. Inj.-ekon. institutla-ri studentlari uchun o’quv qo’llanma. T.: O’qituvchi, 1977 .