TENGLAMA, TENGSIZLIK VA ULARNING SISTEMALARINI ASOSIY SINFLARINI O’RGANISH METODIKASI. Tenglama, tengsizlik va ularning sistemalarini ikki gruppaga bo’ish mumkin : Birinchi gruppa – ratsional tenglamalar, tengsizliklar va ularning sistemalari. Bu gruppada muximlari bir noma’lumli chiziqli tenglamalar, kvadrat tenglamalar va bularga mos tengsizliklar, ikki noma’lumli chiziqli tenglama (tengsizliklar) sistemasi hisoblanadi. Ikkinchi gruppa – irratsional va trantssendent tenglamalar, tengsizliklar va ularning sistemalari. bu gruppa sostaviga irratsional, ko’rsatkichli, logarifmik, trigonometrik tenglamalar va ularga tegishli tengsizliklar kiradi. To’liqsiz o’rta maktab algebra kursida o’quvchilar birinchi gruppaga tegishli bilimlarini to’liq egallaydilar. Yuqori sinf algebra va analiz assoslari kursida ikkinchi gruppaga tegishli materiallrni xususiy ko’rinishlari va ularning ayrim rurlarini o’rganadilar. Umumiy holda to’lig’icha algebra va analiz kurslarida oliy o’quv yurtlarida tanishadilar. Turli ko’rinishdagi tenglamalar, tengsizliklar va ularning sistemalarini o’rganish ketma-ketligi turli darsliklarda turlicha talqin etiladi. Bularni asosan ikkiga ajratish mumkin. Oldin tenglamalar va ularning sistemalari, so’ngra esa tengsizliklar o’rganiladi. Bunday usul kbadrat uchhadlarni o’rganish bilan tugaydi. Yuqori sinflarda logarifmik, ko’rsatkichli va trigonometrik tenglamalar va ularga mos tengsizliklar bir-biriga bog’liq holda o’rganiladi.
Asosiy tengsizliklar sinflari o’zlariga mos tenglamalardan so’ng o’rganiladi. Bu usullarning mavjudligi o’ziga hos ijobiy va salbiy xususiyatlarga ega.
BIR NOMA’LUMLI CHIZIQLI TENGLAMALAR. Bu sinfdagi tenglamalarni o’rganishga algebra kursiga birinchi kirishiladi. SHu sababdan bunday tenglamalarni o’rganish xarakterining muhimligi kelgusidagi tenglama tengsizliklarni o’rganishda muhim o’rinni egallaydi. Bir noma’lumli chiziqli tenglamalarni o’rganish borasida tenglama tushunchasini umumiy holda shakillantirish, tenglama termnini kiritilishi singari savollarga duch kelinadi. Tenglama tushunchasiga ta’rif berishda o’qituvchi birinchi marta metodik izlanishga majbur bo’ladi. bunday holatda algebraik usulda yechiladigan bir noma’lumli birinchi darajali tenglamaga keltiriladigan uncha murakkab bo’lmagan tekstli masaladan foydalanish maqsadga muvofiq. O’quvchilarning masala yechish mobaynida diqqatini asosiy usulm bo’lgan umumiy ko’rinishi (bu yerda va lar bir xil noma’lumli ifodalar) bo’lgan algebraik modelga o’tkazishga qaratilmog’i kerak bo’ladi. So’ngra o’qituvchi aniq formula analizi orqali darslikdagi tenglama tarifini beradi va unga tegishli terminlarni kiritadi. Birinchi darajali bir noma’lumli tenglamaga darsliklarda turlicha ta’ris beradilar. Masalan, Makarechev Y.N. va boshqalar “Algebra 6-sinflar uchun darslik” (S.A. Telyakovskiy taxriri ostida) kitobida quydagi ta’rif keltirilgan : Bir noma’lumli tenglama deb ko’rinishidagi tenglamaga aytiladi. Bu yerda noma’lum, va lar ma’lum sonlardan iborat. Tenglamaga berilgan bunday ta’rif juda tor ma’noga ega bo’lib, xattoki eng sodda masalalarni yechishga ham yetarli emas. SH. A. Alimov va boshqalarning “Algebra 6-8-sinflar uchun” kitobida birinchi darajali bir noma’lumli tenglamaga aniq ta’rif berilmay, misollar yechimlari orqali tushuntiriladi. Kitobda asosiy e’tibor ketma-ket shakl almashtirish qoidasidan foydalanilgan holda tenglama ko’rinishiga keltirilishi ko’rsatiladi. Bu usulda o’quvchilar tenglama haqida yetarli hajmda tasavvurga ega bo’la olmaydi. Tenglama ta’rifi turli ko’rinishda berilgan bo’lsa ham uni o’rganish metodikasi esa asosan birxildir. Birinchi darajali bir noma’lumli tengalamalarn o’rganishda o’quvchilar quydagi bilimlarni egallashlari lozim : berilgan tenglamani yechish algoritmini bilish, tenglama yechimini tekshirish natijalarini qo’llay olish, tenglamalar umumiy nazariyasidagi asosiy tushunchalarni bilishlari, tekstli masalalarni yechishda shu sinfdagi tenglamalarni qo’llay olishlari lozim.