O’rta maktabda IV-sinf matematika darsligida ishlatilgan ta’rifdan foydalanish qulay. Tenglama noma’lumli tenglikdir. Tenglamaga misol qilib, ifodalarni ko’rsatish mumkin. Tenglama va tengsizliklarga o’zgaruvchili jumlalarning xususiy bir ko’rinishi sifatida qarashimiz mumkin. Bu fikrni batafsil qarab o’taylik. . Bu tenglama va tengsizliklarning chap va o’ng tomoni sonli ifodalardan iborat bo’lgani uchun ma’noga ega. Bularning har birini chin yoki yolg’onligi haqida gapirish mumkin. SHu sababdan chap va o’ng tomoni sonli tenglik va tengsizliklardan iborat bo’lgan ifoda ma’noga ega bo’lsa, jumla sifatida qarash mumkin. o’zgaruvchili tenglama va tengsizliklar jumla bo’lmaydi. Agar o’zgaruvchili tenglama (tengsizlik) da o’zgaruvchi o’rniga shunday qiymat qo’yilsaki, unda tenglama (tengsizlik) ning ikkala qismi ham ma’noga ega bo’lsa, u holda chin yoki sonli tenglik (tengsizlik) hosil bo’ladi. Bu yerda o’zgaruvchilar o’rniga qiymatlar qo’yish to’g’risida bormoqda. Demak, har bir tenglama yoki tengsizlikdagi o’zgaruvchilar o’rniga ma’lum qiymatlarni qo’yganda chin yoki yolg’on jumlalar hosil bo’ladi. Bir o’zgaruvchili tenglama (tengsizlik) ni yechimi deb uni to’g’ri sonli tenglikka (tengsizlikka) aylantiradgan o’zgaruvchining qiymatiga aytiladi. Bir o’zgaruvchili tenglamaning yechimini uning ildizi deyiladi. Bir necha o’zgaruvchili tenglamalarni (tengsizliklarni) yechish ham shunga o’xshash amalga oshiriladi. Tenglama (tengsizlik) ni yechish uni qanoatlantiruvchi barcha qiymatlarini topish demakdir. TENGLAMA VA TENGSIZLIKLARNING TENG KUCHLILIGI. Matematikada tenglama va tengsizliklarning tengkuchlilik masalasi mazmun jihatdan juda yaqin va o’zaro bog’liqdir. Biror tenglamaning tenglamalar sistemasiga, tengsizlikni esa tenglamalarga teng kuchli bo’lishini ko’p uchratish mumkin. Misollar keltiraylik : tenglma quydagi ikki va tenglamalarga teng kuchli.
tenglama tenglamalar sistemasiga teng kuchli.
tenglama qatiyb bo’lmagan tengsizlikka teng kuchli.
tenglama tenglamalar sistemasiga teng kuchli.
tengsizligi tengsizliklar sistemasiga teng kuchli.
tengsizligi yoki tengsizliklar sistemalariga teng kuchli.
tengsizligi tenglamaga teng kuchli.
Bu misollardan ko’rinib turibdiki, tenglama, tengsizlik va ularning sistemalari orasidagi teng kuchlilikni bir-biridan ajratib o’rganish maqsadga muvofiq emas ekan. Tengkuchlilik tushunchasi “dan kelib chiqadi” tushunchasiga asoslanadi. Bu tushunchaning ma’nosini quydagi misolda tushuntiramiz tenglamani tenglama ko’rinishiga (tenglikni ikkala tomonini kvadratga ko’tarish orqali) keltirish mumkin. Bundan ko’rinadiki ning biror qiymatida tenglama to’g’ri sonli tenglikka aylansa, o’zgaruvchining o’sha qiymatida tenglamasi ham to’g’ri sonli tenglikka aylanadi. Bundan berilgan tenglikdan ikkinchi tenglama kelib chiqadi deyiladi. Ikkinchi bir misolni ko’raylik : tengsizligidan tengsizligi kelib chiqadi. Haqiqatdan ham, ning biror qiymatida berilgan tengsizlik to’g’ri tengsizlikka aylanadi . u holda va shartidan “kichik” munosabatning tranzitivlik xossasiga asosan to’g’ri (chin) tengsizligi kelib chiqadi, ya’ni soni ikkinchi tengsizlikning yechimi bo’ladi. Demak, birinchi tengsizlikning har bir yechimi ikkinchi tengsizlikni yechimi bo’ladi, ya’ni birinchi tengsizlikdan ikkinchi tengsizlik kelib chiqadi.