Teorem.aşağıdakı xassələrə malik funksiya olsun: 1) -da azalmayandır ; 2) soldan kəsilməzdir ; 3) . Оnda elə ( ) еhtimal fəzası və bu fəzada təyin oluna bilinən təsadüfi kəmiyyəti vardır ki, -nın paylanma funksiyası -ə bərabərdir. Diskret paylanma Təsadüfü kəmiyyətin tamamilə təyin olunması üçün onun aldığı qiymətlər çoxluğu və bu qiymətləri hansı ehtimalla alması göstərilməlidir. Təsadüfü kəmiyyətin paylanma funksiyası bu mənada onu tamamilə xarakterizə edən ən universal vasitələrdən biridir.Təsadüfü kəmiyyətin ala bildiyi qiymətlərlə, bu qiymətlərə uyğun ehtimallar arasında əlaqə başqa üsullarla da verilə bilər.
Təsadüfiü kəmiyyətin mümkün qiymətləri ilə onlara uyğun ehtimallar arasında əlaqə yaradan hər bir münasibətə təsadüfü kəmiyyətin paylanma qanunu deyilir. Təsadüfü kəmiyyətlərin paylanma qanunları müxtəlif formalarda olsa da, onların hamısndan paylanma funksiyasını almaq həmişə mümkün olmalıdır.Təsadüfü kəmiyyətin ehtimalının paylanma qanunu bir sıra hallarda daha aydın və əlverişli şəkillərdə verilir. Bunların iki əsas növü ilə tanış olaq.
Tutaq ki, X təsadüfiükəmiyyətinin aldığı sonlu və ya hesabi sayda qiymətləri və bu qiymətləri alma ehtimalları
Verilmişdir. Cüt-cüt uyuşmayan
X x1,X x2,...,X xn,...
hadisələri tam sistem təşkil etdiyindən şərti ödənilir. Diskret təsadüfü
X kəmiyyətinin aldığı qiymətləri və bu qiymətləri almasının
ehtimallarının göstərilməsi onun paylanma qanununu təyin edir.Diskret təsadüfi kəmiyyətin paylanma qanunu cədvəl şəklində verilir:
.....
....
Bu cədvələ diskret təsadüfü kəmiyyətin ehtimallarının paylanma cədvəli deyilir.
Diskret təsadüfü kəmiyyətin paylanma qanunu cədvəl şəklində verildikdə onun paylanma funksiyası
Kimi tapılır. Ən çox rast gəlinən diskret paylanmalar aşağıdakılardır.
Binomial paylanma. X təsadüfü kəmiyyəti m=0,1,2,... n mümkün qiymətlərini
Ehtimalı ilə aldıqda, ona binomial qanunla paylanmış diskret təsadüfi kəmiyyət deyilir. n və p binomial paylanmanın parametrləri adlanır.