17.
JlanHH
H. A.,
PaTa(J)beBa
JI.C..
KpaTHbie
HHTerpajibi.
Teopna
n on a.
yne6Hoe noco6He.
CII6: Cri6ry HTMO, 2009.
18.
JlairreB
r.O.
OjieMeHTbi BeicropHoro
h c h h c j ic h h h
M.:
Hayxa,
1975.
19. IlanbMOB B.A. OjieMeHTbi TeH3opHoii ajire6pw
h
TeH3opHoro
aHajiH3a. CaHKT-IIeTep6ypr. H3/iaTeJibCTBO IIojiHTexHHHecKoro
y H H -
BepcHTeTa, 2008.
2 0 . T
h x o h c h k o
A.B. BeicropHbift
aHajiH3
b
npHKJia^Hbix MaTeMa-
THHecKHX naxeTax.
-
0 6
h h h c k
:
HAT3, 2006.
21. Murray R. Spiegel Vector Analysis
and an Introduction to
Tensor Analysis, 1959.
22. Jespe Ferking-Borg. Introduction to Vector and Tensor analysis.
2007.
23. Joseph C. Kolecki. Foundations o f Tensor Analysis for Students
of Physics and Engineering with an Introduction o f the Teory of
Relativity. Gleen Research Center, Cleveland, Ohio, 2005.
24. Joseph C. Kolecki. An Introduction
to Tensor for Students of
Physics and Engineering. Gleen Research Center, Cleveland, Ohio,
2005.
Internet manbalari:
1. http: //www.exponenta .ru
2. http: // gltrs.grc.nasa.gov
3. http: // www.geocities.com/r-sharipov
156
www.ziyouz.com kutubxonasi
MUNDARIJA
Kirish__________________________________
3
I bob. SKALYAR VA VEKTOR MAYDONLAR
1. Skalyar maydon....................................................
6
1.1 Skalyar maydon tushunchasi..................................
6
1.2 Maydonlaming sath sirt va sath chiziqlari............
8
1.3 Berilgan yo‘nalish bo‘yicha hosila.........................
11
1.4 Skalyar maydon gradienti......................................
15
1.5 Sirt normalining yo‘naltiruvchi kosinuslari.........
18
2. Vektor maydon----------- ---------------- ......— ..—
21
2.1
Vektor maydon tushunchasi.................................
21
2.2 Vektor chiziqlari.
Vektor chiziqlarining diffe-
rensial tenglamasi...................................................
23
Dostları ilə paylaş: