Xarakteristik funksiyalar sinfi va taqsimot funksiyalar sinfi or-1
Natija. Yagonalilik teoremasi. Taqsimot funksiya o’z xarakteristik funksiyasi orqali bir qiymatli aniqlanadi. Agar ayirma da funksiyani bir qiymatli aniqlashini e’tiborga olsak, u holda yuqoridagi teoremadan natijaning isboti kelib chiqadi.
Xarakteristik funksiyalardan foydalanib, normal qonuning quyidagi muhim xossasini keltiramiz. Normal qonun bo’yicha taqsimlangan bog’liq bolmagan va tasodifiy miqdorlarning yig’indisi yana normal taqsimotga ega bo’ladi.
Xaqiqatdan ham, bog’liq bo’lmagan va tasodifiy miqdorlar mos ravishda va parametrlar bo’yicha taqsimlangan bo’lsa, u holda yig’indining xarakteristik funksiyasi:
Demak, yig’indi parametrli normal taqsimotga ega.
Aksincha, va xarakteristik funksiyalar uchun
bo’lishligini G. Karmer isbotlagan, ya’ni o’zaro bog’liq bo’lmagan va tasodifiy miqdorlar yig’indisi normal qonun bo’yicha taqsimlangan bo’lsa, u holda qo’shiluvchilarning har biri ham normal qonun bo’yicha taqsimlangan bo’ladi.
parametrli Puasson qonuni bo’yicha taqsimlangan tasodifiy miqdor berilgan bo’lsin. Uning xarakteristik funksiyasi quyidagiga teng:
Endi o’zaro bog’liq bo’lmagan va tasodifiy miqdorlar mos ravishda va parametrli Puasson qonuni bo’yicha taqsimlangan bo’lsin. Ular yig’indisining xarakteristik funksiyasi quyidagiga teng:
Demak, tasodifiy miqdor parametrli Puasson qonuni bo’yicha taqsimlangan bo’ladi.