Riy.güc.IX.7. Şagird modelləşdirmə vasitəsi ilə problemi həll edərkən bərabərlik və bərabərsizlik sistemlərindən istifadə edə bilər.
Nəticə göz önündədir, əgər şagird:
-
Mətni məsələni həll etmək üçün ikiməchullu bərabərlik (tənlik) sistemini qurur və həll edir, hansında ki, bir bərabərlik xəttidir, ikincinin dərəcəsi ikidən çox deyildir; məsələnin kontekstini nəzərə alaraq həllin interpretasiyasını həyata keçirir;
-
Bərabərlik/bərabərsizlik sistemlərini (dəyişənlərin və bərabərlik/bərabərsizliklərin sayı 2-ni keçmir) həll etmək üçün üsulu (məsələn toplama, əlavə etmə), həlli qrafiki şəkildə təsvir edir və həlli çoxluqla interpretasiya edir;
-
Xətti bərabərsizlik və ikixətli bərabərsizliyə malik sistem vasitəsi ilə məsələnin şərtində verilmiş məhdudiyyətləri təsvir edir.
Riy.güc.IX.8. Şagird problemin modelləşdirilməsi və analizi üçün diskretiv riyaziyyatın elementlərindən istifadə edə bilər.
Nəticə göz önündədir, əgər şagird:
-
Variantları saymaq üçün, planı/cədvəli qurmaq üçün optimallaşmanın sonlu məsələlərini həll etmək üçün (alqoritmsiz) ağacvarı diaqramlardan və ya qrafalardan istifadə edə bilirsə (məsələn, iki obyekt arasında ən kiçik məsafəni tapmaq);
-
Real prosesləri diskretiv model şəklində təsvir edərkən rekursiyadan istifadə edir, rekkurent üsulla verilmiş çoxluğu paylaşdırırsa;
-
Adekvat şəkildə, o cümlədən real vəziyyəti modelləşdirərkən və ya təsvir edərkən çoxluq terminlərindən və anlayışlarından (məsələn funksiyanın təyin oblastı və qiymətlər oblastı), sonlu çoxluqlar üzərində əməliyyatlardan (kəsişmə, birləşdirmə, ayırma, toplama) və Venn diaqramından istifadə edirsə.
Dostları ilə paylaş: |