Yuqori tartibli hosilalar



Yüklə 165,5 Kb.
səhifə3/4
tarix16.10.2023
ölçüsü165,5 Kb.
#156217
1   2   3   4
Yuqori tartibli hosilalar

2. Leybnits formulasi.
Agar u(x) va v(x) funksiyalar n-tartibli hosilalarga ega bo‘lsa, u holda bu ikki funksiya ko‘paytmasining n -tartibli hosilasi uchun

+ (9)
formula o‘rinli bo‘ladi. Bunda .
Isboti. Matematik induksiya usulini qo‘llaymiz. Ma’lumki,
(uv)’=u’v+uv’. Bu esa n=1 bo‘lganda (9) formulaning to‘g‘riligini ko‘rsatadi. Shuning uchun (9) formulani ixtiyoriy n uchun o‘rinli deb olib, uning n+1 uchun ham to‘g‘riligini ko‘rsatamiz. (9) ni differensiyalaymiz:

+ (10)
Ushbu

=
tengliklardan foydalanib, (10) ni quyidagicha yozamiz:

Demak, (9) formula n+1 uchun ham o‘rinli ekan. Isbot etilgan (9) formula Leybnits formulasi deb ataladi.


3. Leybnits formulasi tatbiqlari.

Misol. y=x3ex ning 20-tartibli hosilasi topilsin.


Yechish. u=ex va v=x3 deb olsak, Leybnits formulasiga ko‘ra

bo‘ladi. (x3)’=3x2, (x3)’’=6x, (x3)’’’=6, (x3)(4)=0 tengliklarni va y=x3 funksiyaning hamma keyingi hosilalarining 0 ga tengligini, shuningdek n uchun (ex)(n)=ex ekanligini e’tiborga olsak,
tenglik hosil bo‘ladi.
Endi koeffitsientlarni hisoblaymiz:

Demak,

. Leybnits formulasi.
Agar u(x) va v(x) funksiyalar n-tartibli hosilalarga ega bo‘lsa, u holda bu ikki funksiya ko‘paytmasining n -tartibli hosilasi uchun

+ (9)
formula o‘rinli bo‘ladi. Bunda .


Isboti. Matematik induksiya usulini qo‘llaymiz. Ma’lumki,
(uv)’=u’v+uv’. Bu esa n=1 bo‘lganda (9) formulaning to‘g‘riligini ko‘rsatadi. Shuning uchun (9) formulani ixtiyoriy n uchun o‘rinli deb olib, uning n+1 uchun ham to‘g‘riligini ko‘rsatamiz. (9) ni differensiyalaymiz:

+ (10)
Ushbu


tengliklardan foydalanib, (10) ni quyidagicha yozamiz:

Demak, (9) formula n+1 uchun ham o‘rinli ekan. Isbot etilgan (9) formula Leybnits formulasi deb ataladi.


3. Leybnits formulasi tatbiqlari.
Misol. y=x3ex ning 20-tartibli hosilasi topilsin.

Yechish. u=ex va v=x3 deb olsak, Leybnits formulasiga ko‘ra


bo‘ladi. (x3)’=3x2, (x3)’’=6x, (x3)’’’=6, (x3)(4)=0 tengliklarni va y=x3 funksiyaning hamma keyingi hosilalarining 0 ga tengligini, shuningdek n uchun (ex)(n)=ex ekanligini e’tiborga olsak,


tenglik hosil bo‘ladi.
Endi koeffitsientlarni hisoblaymiz:

Funksiyaning o`zgarish xarakteri bilan uning hosilasi orasida bog`-liqlik mavjud bo`lib, hosila yordamida fiinksiya tabiatiga mansub bir qator xossalarni aniqlash mumkin.


V= [a;b] oraliqda у = f(x) fiinksiya berilgan bo`lib, har qanday shu oraliqdan tanlanadigan ikki x1 va x2 sonlar uchun x1 < x2 munosabatdan f(x1)f(x2)) tengsizlik kelib chiqsa, u holda у = f(x) funksiya V oraliqda o`suvchi (kamayuvchi) deyilishini eslatib o`tamiz (3-§ ga qarang).


V= [a;b] kesmada aniqlangan у = f(x) funksiya, shu kesmada uzluksiz va (a;b) intervalda differensiallanuvchi bolsin. Funksiyaning V oraliqda o`sishi (yoki kamayishi)ning yetarli sharti quyidagi teoremadan iborat.
1 - Teorema. V oraliqda differensiallanuvchi f(x) funksiya shu oraliqda o`suvchi (kamayuvchi) bo`lishi uchun, oraliqning har bir ichki nuqtasida P(x) hosilaning musbat (manfiy) bo`lishi yetarli.
X oraliqqa tegishli har qanday x1 va x2 nuqtalar qaralmasin, [x1;x2] kesmada f(x) funksiya uchun Lagranj teoremasi o`rinli, ya`ni, f(x2) - f(x1) = f(c) (x2 - x1), bu yerda x1 < x2 va с € (x1;x2). Tenglikdan, agar f(c) > 0 bo`lsa, f(x2) > f(x1) va funksiya o`suvchi, agarda f(c) < 0 bo`lsa, f(x2)< f(x1) va funksiya kamayuvchi ekanligi kelib chiqadi.
F unksiya monotonlik alomatlarining geometrik izohi 1 rasmlarda keltirilgan.
a) f ′(c1) = tga1>0b) b) f ′(c2) = tg a2 < 0
у = f(x) funksiya grafigiga o`tkazilgan urinmalar X oraliq ichki nuqtalarida OX o`qi musbat yo`nalishi bilan o`tkir burchak hosil etsa, funksiya o`suvchi, o`tmas burchak hosil qilsa kamayuvchidir.

Masala. у = x- e-2x funksiyani monotonlikka tekshiring.


Berilgan funksiya R da aniqlangan va har bir x€R nuqtada y`(x) = e-2x · (1 - 2x) hosilaga ega bo`lib, differensiallanuvchidir. Agar x < 1/2 bo`lsa, y`(x) > 0 bo`lib, funksiya o`suvchi, agarda x > 1/2 bo`lsa, y(x)
Demak, у = х·е-2х fijnksiya (-∞; l/2) oraliqda monoton o`suvchi, (l/2; ∞) oraliqda esa monoton kamayuvchidir.
Masala. f(x) = x-arctgx fiinksiyaning sonlar o`qida o`suvchi ekanligini isbotlang.
f ` (x) = (x-arctgx)` = 1 - 1/1+x2 bo`lib, har bir x€R uchun, f `(x) > 0. Demak, funksiya R da monoton o`suvchi.
2. Funksiya ekstremumlari. Ekstremumning zaruriy va yetarli shartlari
у = f(x) funksiya x0 nuqtaning biror δ atrofida aniqlangan bo`lib, x0 nuqtada uzluksiz bo`lsin.
Agar barcha x€(x0-5; x0) U (x0;x0+δ) nuqtalar uchun f(x)f(x0)) tengsizlik o`rinli bo`lsa, x0 f(x) funksiyaning qat`iy maksimum (minimum) nuqtasi deyiladi. (2 a - rasm).
Agarda har bir x€(x0-5;x0) U (x0;x0+δ) uchun f(x) < f(x0) (f(x)>fl;x0)) tengsizlik bajarilsa, u holda x0 f(x) funksiyaning noqat`iy maksimum (minimum) nuqtasi deyiladi (2 b - rasm).
Funksiyaning qat`iy va noqat`iy maksimum va minimum nuqtalariga, uning lokal (mahalliy) xarakterdagi ekstremum nuqtalari deyiladi.
Agar x0 f(х) funksiyaning maksimum nuqtasi bo`lsa, u holda x0 nuqtaning qaralayotgan 6 atrofida Δf(x0) = f(x) - f(x0) < 0 (Δf(x0) < 0) munosabatlar o`rinli bo`ladi. Agarda x0 f(x) funksiyaning minimum nuqtasi bo`lsa, unda Δf(x0) > 0 (Δf(x0) > 0) tengsizliklar bajariladi.
2 - Teorema. (Funksiya ekstrcmumining zaruriy sharti)
Agar x0 nuqta f{x) funksiyaning ekstremum nuqtasi bo`lib, funksiya uning biror atrofida aniqlangan bo`lsa, u holda f `(x0) = 0 yoki f `(x0) - mavjud emas.
Teoremani geometrik izohlash mumkin. Teorema shartlari bajarilganda, у = f(x) funksiya grafigining x0 abssisali nuqtasiga o`tkazilgan urinma yoki mavjud va OX o`qiga parallel (2 a - rasm), yoki mavjud emas (2 b - rasm).

a) f `(x0) = 0 b) f `(x0) - mavjud emas.


Funksiya ekstremumining zaruriy shartlarini qanoatlantiruvchi, ya`ni funksiya hosilasi f(x) ni nolga aylantiruvchi yoki f `(x) mavjud bo`l-magan, funksiya aniqlanish sohasining ichki nuqtalariga uning kritik nuqtalari deyiladi. Ulardan f `(x)=0 tenglamani qanoatlantiruvchi kritik nuqtalarga statsionar nuqtalar deyiladi.


Misol. у = (х-4)· funksiyaning kritik nuqtalarini toping.


Funksiya sonlar o`qida aniqlangan va y`(x) = 4/3·x-1/ . x = 1 da y`(l) = 0 bo`lib, x = 0 da y`(0) - mavjud emas.
Demak, x = 1 nuqta funksiyaning statsionar nuqtasi, {0;l} nuqtalar to`plami esa uning kritik nuqtalari to`plamidir.
Funksiya ekstremumi zaruriy shartini qanoatlantiruvchi har bir kritik nuqta uning ekstremum nuqtasi bo`lavermaydi. Masalan, у = x3 funksiya R da monoton o`suvchi, chunki (x3)` ≥0, x€R. x = 0 nuqta esa uning kritik (statsionar) nuqtasi chunki y`(0) = 0. Funksiya sonlar o`qida monoton o`suvchi bo`lgani uchun, x = 0 kritik nuqtasi uning ekstremumi bo` la olmaydi.
Funksiyaning ekstremum nuqtalari uning kritik nuqtalari ichidan quyidagi yetarli shartlardan biri asosida tanlanadi.
3 - Teorema. (1-yetarli shart) f(x) funksiya x0 kritik nuqtaning biror δ atrofida differensiallanuvchi x0 nuqtaning o`zida uzluksiz bo`lib, diffcrensiallanuvchi bo`lishi shart bo`lmasin. Agar (x0-δ; x0) va (x0; x0+ δ) intervallarda f `(x) hosila qarama-qarshi ishorali qiymatlarga erishsa, x0 ekstremum nuqta bo`ladi. Xususan:
a) agarda (x0-δ;x0) da f(x) > 0, (x0; x0+δ) da f `(x) < 0 bo`lsa, x0 qat`iy maksimum nuqta (3a - rasm); b) agarda (xo- δ; x0) da f `(x )0; x0+δ) da f (x)>0 bo`lsa, x0 - qat`iy minimum nuqta (3b - rasm).
Agarda f `(x) x0 dan o`tayotib, o`z ishorasini saqlab qolsa, x0 kritik nuqta ekstremum nuqta bo`la olmaydi (3с - rasm).
x1-max(.) x2-min (.) x3-ekstremum (.) emas

Masala. у = (x - 4)· funksiyaning ekstremum nuqtalarini toping.


Yuqorida funksiyaning kritik nuqtalari to`plami {0;l} aniqlangan edi. Funksiya aniqlanish sohasi sonlar o`qini kritik nuqtalar yordamida intervallarga ajratamiz va yetarli shartlarni tekshirib ko`ramiz:
Demak, x = 0 kritik nuqta ekstremum nuqta emas, x = 1 nuqta esa, funksiyaning minimum nuqtasi bo`lib, y(l) = - 3.

4 - Teorema. (2-yetarli shart) f(x0) = 0 bo`lib, x0 statsionar nuqtada ikkinchi tartibli hosila f "(x0) mavjud bo`lsa, u holda agar f (x0) 0 – maksimum nuqta, agar f "(x0)>0 bo`lsa, x0 - minimum nuqta va agarda f "(x0) = 0 bo`lsa, x0 nuqtada ekstremumning mavjudlik masalasi ochiq qoladi.


Masala. у = x3 + 6x2 funksiyaning ekstremum nuqtalarini toping.
Funksiya hosilasi y`= 3-(x2+4x) va y`(x) = 0 tenglama yechimlari x = -4, x = 0 nuqtalar uning statsionar nuqtalaridir. Ikkinchi tartibli hosila y"= 6 - (x+2). Statsionar nuqtalarda y"(- 4) = -12 < 0, y"(0) = 12 > 0 bo`lgani uchun, ikkinchi yetarli shartga ko`ra x = - 4 - qat`iy maksimum nuqta va y(- 4) = 32, x = 0 - qat`iy minimum nuqta va y(0) = 0.
5 - Teorema. (3 - yetarli shart) f(x) funksiya uchun x0 nuqta va o`z navbatida f `(x0) = f "(х0) - f(n-1)(x0) = 0 tengliklar o`rinli va f (n)(x0) ≠ 0 bo`lsin. Unda:
agar n juft bo`lib, f(n) (x0) 0 - qat`iy maksimum nuqta, f(n) (x0) > 0 bo`lsa, x0 – qat`iy minimum nuqta bo`ladi;
agarda n - toq bo`lsa, x0 - ekstremum nuqta bo`lmaydi.

Masalan, у = х4 funksiya uchun y`(x) = 4x3, y"(x) = 12x2, y`"(x) = 24x, y""(x) 24. y` = 0 tenglama yechimi x = 0 statsionar nuqtada y`(0) = y"(0) = y`"(0) = 0 va y""(0) = 24 > 0 bo`lgani uchun, uchinchi yetarli shartga ko`ra x = 0 - qat`iy minimum nuqta va y(0) = 0.



Yüklə 165,5 Kb.

Dostları ilə paylaş:
1   2   3   4




Verilənlər bazası müəlliflik hüququ ilə müdafiə olunur ©azkurs.org 2024
rəhbərliyinə müraciət

gir | qeydiyyatdan keç
    Ana səhifə


yükləyin