Zahiriddin muhammad bobur nomli andijon davlat universiteti



Yüklə 1,1 Mb.
səhifə10/10
tarix18.12.2022
ölçüsü1,1 Mb.
#76004
1   2   3   4   5   6   7   8   9   10
Marxabo

4.0 Teskari proporsionallik.
formula bilan berilgan funksiyaga teskari proporsionallik deyiladi, k soniga teskari proporsionallik koeffitsiyenti deyiladi . funksiyaning xossalari.
1. Aniqlash sohasi о‘zgarish sohasi
2). Toq funksiY.
2. Agar bо‘lsa, funksiya va oraliqlarda kamayadi, agar bо‘lsa, funksiya va oraliqlarda о‘sadi.
funksiyaning grafigi ikki tarmoqdan iborat egri chiziqdir, bu egri chiziqni giperbola deb ham ataladi. Agar bо‘lsa, teskari proporsionallik grafigi tarmoqlari II va IV choraklarda, bо‘lgan holda esa I va III choraklarda joylashadi. Misol sifatida funksiya grafigini yasashni qaraylik. Avvalo grafikning oraliqdagi tarmog‘ini yasaymiz. Funksiyaning qiymatlari jadvalini tuzamiz:





. . .





1

2

4

. . .



. . .

4

2

1





. . .

Hosil qilingan . . . , nuqtalarni koordinata tekisligiga yasab va ularni silliq egri chiziq bilan tutashtiramiz (16 – chizma). Bu funksiya grafigining oraliqdagi tarmog‘i bо‘ladi. funksiyaning toqligidan foydalanib, yasalgan tarmoqqa unga koordinatalar boshiga nisbatan simmetrik bо‘lgan tarmoqni qо‘shsak, natijada funksiya grayafigini hosil qilamiz.

Mashq.
a) b) v)


funksiyaning grafigini yasang.
Nuqtadagi uzluksizlik ta’riflari
Dastlab nuqtaning ( dagi) atrofi tushunchasini eslaylik:
.
biror sonli to`plam, ya’ni va funksiya berilgan bo`lsin. Agar
1)
2) (1)
bo`lsa, qaralayotgan funksiya nuqtada uzluksiz deb ataladi.
Bu ta’rif funksiya nuqtadagi uzluksizligining « » tilidagi (yoki Koshi bo`yicha) ta’rifi deyiladi.
Uzluksizlik ta’rifidagi 2) shartni quyidagicha ham ifodalash mumkin.
21)
(yoki so`zlar bilan: nuqtaning ixtiyoriy atrofi uchun nuqtaning shunday atrofi topiladiki, bu atrofning dagi barcha nuqtalari ning nuqtalariga akslanadi).
nuqta uchun quyidagi ikki holdan bittasi o`rinli:
cheksiz to`plam (2)
bitta elementdan iborat (3)
Haqiqatan ham, agar birinchi hol o`rinli bo`lmasa, nuqtaning shunday atrofida ning chekli sondagisi (cheklita) nuqtalari mavjud bo`ladi.
Xulosa

Tabiat xodisalarini kuzatib tekshirar ekanmiz, amaliy faoliyatimizda kо‘plab fizik miqdorlarga duchor bо‘lamiz, bunday miqdorlarga vaqt, uzunlik, hajm, tezlik, massa, kuch va hokazolar kiradi.


Turmushda о‘zgarmas miqdorlar ham uchraydi. Masalan, aylana uzunligining uning diametriga nisbatini olish mumkin, istalgan aylana uchun bu miqdor о‘zgarmas bо‘lib, u soniga teng.
Ikkinchi misol: har qanday uchburchakda, uning ichki burchaklari yig‘indisi 1800 ga teng. Bunday misollarni kо‘plab kо‘rsatish mumkin.
Shunday qilib, miqdorlarni о‘zgaruvchi va о‘zgarmas miqdorlarga ajratish mumkin.
Ta’rif: Turli xil son qiymatlari qabul qiladigan miqdorga о‘zgaruvchi miqdor, birgina son qiymat qabul qiladigan miqdorga esa о‘zgarmas miqdor deyiladi. Odatda о‘zgarmas miqdorlarni va hokozo, о‘zgaruvchi miqdorlarni esa harflari bilan belgilaydilar. Ba’zi bir miqdorlar har qanday sharoitda ham о‘z qiymatini о‘zgartirmaydi, bunday miqdor absolyut о‘zgarmas miqdor deyiladi. Bunga misol sifatida yuqorida aytib о‘tilgandek, aylana uzunligining uning diametriga nisbati sonini kо‘rsatish mumkin.
FOYDALANILGAN ADABIYOTLAR RO`YXATI


  1. Isroilov M. «Hisoblash metodlari», T., "O`zbekiston", 2003

  2. Shoxamidov Sh.Sh. «Amaliy matematika unsurlari», T., "O`zbekiston", 1997

  3. Boyzoqov A., Qayumov Sh. «Hisoblash matematikasi asoslari», O`quv qo`llanma. Toshkent 2000.

  4. Abduqodirov A.A. «Hisoblash matematikasi va programmalash», Toshkent. "O`qituvchi" 1989.

  5. Vorob`eva G.N. i dr. «Praktikum po vichislitel’noy matematike» M. VSh. 1990.

  6. Abduhamidov A., Xudoynazarov S. «Hisoblash usullaridan mashqlar va laboratoriya ishlari», T.1995.

  7. Siddiqov A. «Sonli usullar va programmalashtirish», O`quv qo`llanma. T.2001.

  8. Internet ma`lumotlarini olish mumkin bo`lgan saytlar:

Yüklə 1,1 Mb.

Dostları ilə paylaş:
1   2   3   4   5   6   7   8   9   10




Verilənlər bazası müəlliflik hüququ ilə müdafiə olunur ©azkurs.org 2024
rəhbərliyinə müraciət

gir | qeydiyyatdan keç
    Ana səhifə


yükləyin