Moddiy nuqta kinematikasi



Yüklə 1,05 Mb.
səhifə1/2
tarix16.05.2023
ölçüsü1,05 Mb.
#114710
  1   2
Moddiy nuqta kinematikasi


MODDIY NUQTA KINEMATIKASI


Reja:
1. Kinematikaning asosiy tushunchalari.
2. Moddiy nuqtaning to`gri chiziqli xarakati
3. Moddiy nuqtaning xarakat tenglamalari. Nuqtaning tezligi va tezlanishi
4. Garmonik tebranma xarakat.
Kinematikada nuqta va mexanik sistemaning xarakat turlari o`rganiladi. Boshqacha qilib aytganda, xarakatning tashqi ko`rinishi (manzarasi) uning geometriyasi tekshiriladi. Bunda xarakatni keltirib chiqaradigan sabablar tekshirilmaydi. Kinematika atamasi grekcha "kinema" - so`zdan olingan bo`lib xarakat degan ma`noni anglatadi. Kinematika ikki qismdan iborat.
1.Nuqta kinematikasi, 2.Jism kinematikasi. Muayyan sharoitda o`lchamlari e`tiborga olinmaydigan jism moddiy nuqta deyiladi. Bir-biriga boglig bo`lgan nuqtalar yigindisi mexanik sistemani tashkil etadi. Masalan, tosh, shisha metall,mashina qismlari kabilarni mexanik sistema deyish mumkin.
Ayrim xollarda erga erkin tushayotgan jismni, er, quyosh va boshqa sayyoralarni nuqta deb xisoblash mumkin. Ma`lumki xar qanday xarakat fazoda va ma`lum vaqt momentida sodir bo`ladi. Fazo va vaqt materiyaning yashash formalari bo`lib, xarakatsiz materiya va materiyasiz xarakat bo`lishi mumkin emas. Nyuton mexanikasida fazo va vaqt absalyut deb qaraladi. Lekin nisbiylik nazariyasida ko`rsatiladiki, fazo va vaqt, nuqta yoki jismning xarakat xolatiga (tezligi, tezlanishiga) bogliq bo`ladi. Nuqta kinematikasi deganda nuqtaning xarakat qonuni, traektoriyasi, tezligi va tezlanishlarini aniqlash tushiniladi. Bu kattaliklar (tezlik, tezlanish, burchak tezlik, ko`chish va x.k) kinematik parametrlar deyiladi.
Nuqtaning fazodagi vaziyatini isitalgan vaqt momentida aniqlashga imkon beradigan matematik boglanish qarakat qonuni deyiladi. Nuqtaning fazoda boshqa biror qo`zgalmas nuqta yoki jismga nisbatan vaziyatini o`zgartirishi mexanik xarakat deyiladi. Mexanik xarakat bu mavjud bo`lgan xarakatlarning eng soddasidir.
Sanoq sistemalarda nuqta vaziyatini aniqlash odatda ma`lum koordinata sistemaslarida amalga oshiriladi. Ko`pchilik xollarda dekart qutb va tabiiy koordinatalar sistemalari qo`llaniladi.
Nuqtaning xarakati vaqtida ketma-ket vaziyatlarini ifodalaydigan nuqtalarning geometrik o`rni traktoriya deyiladi.
xarakat nuqta traektoriyasiga qarab to`gri va egri chiziqli xarakatlarga, nuqta xarakatining jadalliga qarab tekis va notekis xarakatlarga bo`linadi. Nuqtaning xarakati asosan vektor koordinatalar va tabiiy usulda beriladi. Radius vektor yoki vektor usulda nuqta xarakatini o`rganish mexanika masalalarini echishda ancha qulaylik tugdiradi. Radius-vektor ta`rifidan ko`rinadiki xarakatlanadigan nuqtaning traektoriyasi bu radius-vektor oxirining geometrik o`rnidir. Radius-vektor uch elementga: qo`yilish nuqtasi (0 nuqta) modulga (OA kesma uzunligi) va yo`nalishga ega (1-rasm). Ketma-ket vaqt davomida radius vektorning oxirini ifodalaydigan chiziq radius vektorning godografi deyiladi. Radius vektorning godografi bu xarakatlanadigan nuqtaning traektoriyasidir. (1- rasm) dan agar r-ning fazodagi vaziyatini aniqlay olsak, A nuqtaning xam vaziyatini aniqlay olsak, A nuqtaning xam vaziyatini aniqlagan bo`lamiz. A nuqtaning vaziyatini aniqlash uchun r-ni vaqtning funktsiyasi sifatida ifodalash lozim.

40-rasm 41-rasm
Tabiiy usulda nuqtaning xarakati o`sha nuqtaning traektoriyasi bo`ylab o`rganiladi. Endi nuqtaning xarakatini dekart koordinatalar sistemasida o`rganish usulini ko`raylik. M nuqtaning koordinatalari x,y,z lar vaqt funktsiyalari shakllarda x=x(t), y=y(t), z=z(t) (1)
tasvirlangan bo`lsa, istalgan vaqtda M nuqtaning vaziyatini aniqlash mumkin. (1) boglanishlarga xarakat tenglamalari deyiladi. Agar nuqtaning qarakat qonuni ma`lum bo`lsa, nuqtaning traektoriyasi, tezligi va tezlanishini topish mumkin. Masalan nuqtani x=3t2 va y=4t2 qarakat qonunlari bo`yicha xarakat qiladi deb olib, shu nuqtaning xarakat traektoriyasini topish talab etilsin.
x=3t2 va y=4t2 tenglamalar sistemasidan t ni yo`qotib traektoriya tenglamasini topamiz. y=3⁄4y, 3y-4x=0 tenglama to`gri chiziq tenglamasidir. Ma`lumki moddiy nuqtaning radius vektori Δt vaqt ichida Δr ga o`zgarsa, Δr ni Δt ga bo`lgan nisbati o`rtacha tezlik vektori deb ataladi.
(2)
Agar Δt nolga intilsa u xolda tezlik vektorining oniy qiymatini aniqlash mumkin. Buning uchun (2) ni limitini aniqlash lozim.
(3)
Bu vektorning yo`nalishi nuqta traektoriyasiga o`tkazilgan urunma bo`ylab, yo`nalgan o`rtacha tezlik vektorining yo`nalishi esa traektoriyaga o`tkazilgan vatar yo`nalishida bo`ladi. Nuqtaning qarakati vaqtida radius vektorning o`zgarishini 2ta tashkil etuvchiga ajratishi mumkin.Bu tashkil etuvchilardan bittasi radial Δrn , ikkinchisi r vektorga perpendikulyar bo`lgan tranversal tashkil etuvchi Δrn dir. Bu erda n r- vektori bo`ylab yo`nalgan birlik vektor- radial birlik vektor, τ esa r vektoriga perpendikulyar bo`lgan transversal birlik vektordir(3-rasm). Agar dt 0 bo`lgan xol uchun nuqta tezligini topmoqchi bo`lganimizda ekanligini xisobga olsak Δrn, Δrτ ёки drn ва drτ ning kelib chiqishini payqab olish mumkin. Xaqiqatan xam bolganda
(4) ekanligini ko`rish
mumkin. Agar deb belgilasak (4) dan (5) kelib chiqadi. Bunda vn -radial tezlik, vτ -transversal tezlik deyiladi. Radial tezlik vektori r-radius vektori modulinining o`zgarishi tufayli xosil bo`ladi va bu tezlik radius vektor davomida yotadi, Transversal tezlik vektori nuqtaning xarakat yo`nalishi bo`ylab yo`nalgan bo`lib, r radius vektorga perpendikulyardir. Bu tezlikning xosil bo`lishiga sabab .r ning modulini o`zgarishidir. Bu tezlik quyidagi formula bilan aniqlanadi. chunki
(6)
Ko`pchilik xollarda nuqtaning tezligi o`zgarib turadi. Agar Δt vaqtda tezlik vektori Δv ga o`zgarsa, Δv ni Δt ga bo`lgan nisbati o`rtacha tezlanish vektori deb ataladi.
(7)
oniy tezlanishni topish uchun dt 0 ga intilgandagi limit olinadi
(8)
Agar (3) ni (8) ga qo`ysak quyidagi ifoda xosil bo`ladi.
(9)
Shunday qilib tezlik va tezlanish kattaliklarning ikkalasi xam vektordir. Bu kattaliklarni aniqlash uchun r(t) qarakat qonunini bilish lozim.Endi nuqta tezligi va tezlanishini koordinata o`qlaridagi proektsiyalarini ko`ramiz.
Ma`lumki nuqta tezligi (10)
orqali topiladi. Agar tezlik vektori v va radius vektor r larning dekart koordinata o`qlaridagi proektsiyalari
vx , vy , v z va o`qlardagi ortalari i, j, k bo`lsa,
(11)
(12)
shaklda yozilar edi. Birlik vektorlar (orta) doimiy deb tezlik v vektorini topamiz.
(13)
(11) va (13) tenglamaning o`ng tomonini tenglashtiramiz. U xolda quyidagilar xosil bo`ladi.

(14)
Demak nuqta tezligining ma`lum o`qdagi proektsiyasi nuqtaning o`sha o`qdagi koordinatasidan vaqt bo`yicha olingan birinchi tartibli xosilaga teng ekan. Rasmdan to`liq tezlikning moduli vx , vy , v z dan tuzilgan to`gri paralelopepdning katta diagnoliga teng ya`ni
(15)
v - tezlik vektorining yo`nalishi shu v vektorning x,y,z o`qlari bilan xosil qilgan α,β,γ burchaklari orqali topiladi α,β,γ burchaklarni yo`naltiruvchi kosinuslari orqali topish mumkin.

(16)

Tezlanish vektori ning Xam proektsiyalari xuddi tezlik vektoriga o`xshash bo`lib, Quyidagi ifodalardan topiladi.

(17)
To`liq tezlanishning moduli esa tezlanish proektsiyalari orqali quyidagicha aniqlanadi.
(18)
Tezlanish vektorining yo`nalishi yo`naruvchi kosinuslari orqali quyidagicha aniqlanadi.

(19)
Nuqta egri chiziqli xarakat qilganida va tezliklarning o`zgarishi tufayli shularga mos ravishda tezlanishning ikkita tashkil etuvchilari xosil bo`lishini ko`rsatish mumkin. Chunki tezlik vektori ikki va ga ajraladi. Natijada va bo`ladi.
(20)
belgilashlar kiritamiz
(21) (22)
Birinchi tashkil etuvchi tangentsial tezlanish deb ataladi. Ikkinchi tashkil etuvchi - normal tezlanish deyiladi. Normal tezlanish formulasini (22) ni boshqacha shaklda ifodalash mumkin.
(23) va ifodalarni yozish mumkinligini xisobga olsak (23) ni deb yozish mumkin. Oxirgi ifodani(22) ga qo`ysak (24) ifodani xosil qilamiz.
normal tezlanish v tezlik vektorini yo`nalishini o`zgarishi tufayli xosil bo`ladi. Shunday qilib to`liq tezlanish (25) bo`ladi. Uning moduli ga teng bo`ladi.
vektorning yo`nalishi esa burchak orqali xisoblanishi mumkin.


Tezlik va tezlanish vektorlariga asoslanib nuqta xarakatini bir necha turlarga ajralishini ko`raylik.

Yüklə 1,05 Mb.

Dostları ilə paylaş:
  1   2




Verilənlər bazası müəlliflik hüququ ilə müdafiə olunur ©azkurs.org 2025
rəhbərliyinə müraciət

gir | qeydiyyatdan keç
    Ana səhifə


yükləyin