O’zbеkiston rеspublikasi oliy va o’rta maxsus ta'lim vazirligi



Yüklə 296,45 Kb.
səhifə1/4
tarix21.03.2023
ölçüsü296,45 Kb.
#88996
  1   2   3   4
Tub model bo`yicha indekslar, ularning tadqiqlari





O’ZBЕKISTON RЕSPUBLIKASI
OLIY VA O’RTA MAXSUS TA'LIM VAZIRLIGI





Mavzu: Tub model bo`yicha indekslar, ularning tadqiqlari

Bajardi: _____________


Ilmiy rahbar: _____________



REJA:

1.1

Tub modul bo’yicha yuqori darajali taqqoslamalar

1.2

Miqdor ko’rsatkichlari indekslari

1.3

Sifat ko’rsatkichlari indekslari

1.4

O’zgaruvchan va o’zgarmas tarkibli hamda tarkibiy siljishlar indekslari

1.5

Bazisli, zanjirsimon va hududiy (territorial) indekslar

Tub modul bo’yicha yuqori darajali taqqoslamalar.


TA`RIF. Agar 𝑎𝑛, 𝑎𝑛−1, … 𝑎1, 𝑎0 sonlar butun sonlar, p-tub son, 𝑎𝑛 son 𝑝
ga bo`linmasa

𝑎𝑛𝑥𝑛 + 𝑎𝑛−1𝑥𝑛−1 + ⋯ + 𝑎1𝑥 + 𝑎0 ≡ 0(𝑚𝑜𝑑𝑝) (1) taqqoslama 𝑝 −tub modulli 𝑛 −darajali taqqoslama deyiladi.



  1. TEOREMA. (1) taqqoslama, ya`ni tub modulli 𝑛 −darajali taqqoslama yechimlari soni 𝑛 tadan ortiq emas.

ISBOTI. 𝑛 ga nisbatan induksiya metodidan foydalanamiz. Agar 𝑛 = 0 bo`lsa, u holda 𝑎0 ≡ 0(𝑚𝑜𝑑𝑝) 𝖠 𝑎0 ∤ 𝑝 bo`lib, berilgan taqqoslama 0 ta yechimga ega. Faraz qilaylik (1) taqqoslamaning darajasi 𝑛 > 0 bo`lsin. Agar bu taqqoslama yechimga ega bo`lsa, u holda ∃𝑥1 son uchun
𝑎𝑛𝑥𝑛 + 𝑎𝑛−1𝑥𝑛−1 + ⋯ + 𝑎1𝑥1 + 𝑎0 ≡ 0(𝑚𝑜𝑑𝑝) (2)
1 1

o`rinli bo`ladi. (1) dan (2) ni ayiramiz, u holda 𝑘-darajali hadlar ayirmasi


𝑎𝑘(𝑥𝑘 − 𝑥𝑘) = 𝑎𝑘(𝑥 − 𝑥1)(𝑥𝑘−1 + 𝑥𝑘−2𝑥1 + 𝑥𝑘−3𝑥2 + ⋯ + 𝑥𝑥𝑘−2 + 𝑥𝑘−2)
1 1 1 1

𝑘 = 1,2, … , 𝑛 da har bir ayirma (𝑥 − 𝑥1) ko`paytuvchiga ega bo`ladi. Shuning uchun natijani


(𝑥 − 𝑥1) ∙ (𝑏𝑛−1𝑥𝑛−1 + ⋯ + 𝑏2) ≡ 0(𝑚𝑜𝑑𝑝) (3)
(1) ning ∀ boshqa 𝑥2 yechimi
𝑏𝑛𝑥𝑛−1 + ⋯ + 𝑏1𝑥 + 𝑏0 ≡ 0(𝑚𝑜𝑑𝑝) (4) taqqoslamaning yechimi bo`ladi.
(4) ning darajasi 𝑛 −dan kichik bo`lgani uchun uning yechimlari soni 𝑛 − 1
dan katta emas, demak (1) ning yechimalri soni 𝑛 tadan ko`p emas.
1-NATIJA. Agar 𝑎𝑛𝑥𝑛 + ⋯ + 𝑎1𝑥 + 𝑎0 ≡ 0(𝑚𝑜𝑑𝑝) taqqoslama 𝑛 tadan ortiq yechimga ega bo`lsa, u holda uning barcha koeffitsientlai 𝑝 ga bo`linadi.
Haqiqatan, (1) taqqoslama kamida 𝑛 + 1 ta yechimga bo`lsin va
𝑥1, 𝑥2, … , 𝑥𝑛, 𝑥𝑛+1 lar bu yechimlarning bittadan chegirmalari bo`lsin, u holda
𝑓(𝑥) ni quyidagi ko`rinishda yoza olamiz.
𝑓(𝑥) = 𝑎(𝑥 − 𝑥1)(𝑥 − 𝑥2) (𝑥 − 𝑥𝑛−1)(𝑥 − 𝑥𝑛) + 𝑏(𝑥 − 𝑥1)(𝑥 − 𝑥2) (𝑥 −
𝑥𝑛−1) + 𝑐(𝑥 − 𝑥1)(𝑥 − 𝑥2) (𝑥 − 𝑥𝑛−2) + ⋯ + 𝑘(𝑥 − 𝑥1)(𝑥 − 𝑥2) +
𝑙(𝑥 − 𝑥1) + 𝑚 (2)
(2) ga ketma-ket 𝑥 = 𝑥1, 𝑥2, … , 𝑥𝑛, 𝑥𝑛+1 larni qo`yib, barcha
𝑚, 𝑙, 𝑘, … , 𝑐, 𝑏, 𝑎 larning 𝑝 ga karrali ekanini ko`ramiz. Demak, barcha
𝑎0, 𝑎1, … , 𝑎𝑛 lar ham 𝑝 ga karrali.

  1. TEOREMA. Agar 𝑝 −tub son bo`lsa, u holda 𝑥𝑝−1 − 1 ≡ 0(𝑚𝑜𝑑𝑝)

taqqoslama 𝑝 − 1 ta yechimga ega bo`ladi.
ISBOTI. Ferma teoremasiga ko`ra, 𝑥𝑝 = 𝑥(𝑚𝑜𝑑𝑝) yoki 𝑥𝑝−1 ≡ 1(𝑚𝑜𝑑𝑝) bo`lib, uning yechimlari esa, 𝑝 ga bo`linmaydigan 1,2, … , 𝑝 − 1 lardan iborat bo`ladi.
Masalan, 𝑥7−1 ≡ 1(𝑚𝑜𝑑7)
𝑥6 ≡ 1(𝑚𝑜𝑑7) taqqoslamaning yechimlari, 1,2,3,4,5,6 bo`ladi.

  1. TEOREMA. (1) taqqoslama darajasi 𝑝 − 1 dan katta bo`lmagan taqqoslamaga teng kuchli.

ISBOTI. 𝑓(𝑥) ni 𝑥𝑝 − 𝑥 ga bo`lib,
𝑓(𝑥) = (𝑥𝑝 − 𝑥)𝑎(𝑥) + 𝑅(𝑥)
ga ega bo`lamiz. 𝑅(𝑥) ning darajasi 𝑝 − 1 dan katta emas. Ferma teoremasiga ko`ra,
𝑥𝑝 − 𝑥 ≡ 0(𝑚𝑜𝑑𝑝)
taqqoslama o`rinli bo`lgani uchun 𝑓(𝑥) ≡ 𝑅(𝑥)(𝑚𝑜𝑑𝑝) taqqoslama o`rinli.


  1. Yüklə 296,45 Kb.

    Dostları ilə paylaş:
  1   2   3   4




Verilənlər bazası müəlliflik hüququ ilə müdafiə olunur ©azkurs.org 2024
rəhbərliyinə müraciət

gir | qeydiyyatdan keç
    Ana səhifə


yükləyin