Rohit Dua, Samuel A. Mulder, Steve E. Watkins, and Donald C. Wunsch



Yüklə 0,64 Mb.
tarix28.11.2023
ölçüsü0,64 Mb.
#168025
Neural Net

A Brief Overview of Neural Networks

  • By
  • Rohit Dua, Samuel A. Mulder, Steve E. Watkins, and Donald C. Wunsch

Overview

  • Relation to Biological Brain: Biological Neural Network
  • The Artificial Neuron
  • Types of Networks and Learning Techniques
  • Supervised Learning & Backpropagation Training Algorithm
  • Learning by Example
  • Applications
  • Questions

Biological Neuron

Artificial Neuron

  • Σ
  • f(n)
  • W
  • W
  • W
  • W
  • Outputs
  • Activation
  • Function
  • INPUTS
  • W=Weight
  • Neuron

Transfer Functions

  • 1
  • 0
  • Input
  • Output

Types of networks

  • Multiple Inputs and Single Layer
  • Multiple Inputs and layers

Types of Networks – Contd.

  • Feedback
  • Recurrent Networks

Learning Techniques

  • Supervised Learning:
  • Inputs from the environment
  • Neural Network
  • Actual System
  • Σ
  • Error
  • +
  • -
  • Expected Output
  • Actual Output
  • Training

Multilayer Perceptron

  • Inputs
  • First Hidden layer
  • Second Hidden Layer
  • Output Layer

Signal Flow Backpropagation of Errors

  • Function Signals
  • Error Signals

Learning by Example

  • Hidden layer transfer function: Sigmoid function = F(n)= 1/(1+exp(-n)), where n is the net input to the neuron.
  • Derivative= F’(n) = (output of the neuron)(1-output of the neuron) : Slope of the transfer function.
  • Output layer transfer function: Linear function= F(n)=n; Output=Input to the neuron
  • Derivative= F’(n)= 1

Learning by Example

  • Training Algorithm: backpropagation of errors using gradient descent training.
  • Colors:
    • Red: Current weights
    • Orange: Updated weights
    • Black boxes: Inputs and outputs to a neuron
    • Blue: Sensitivities at each layer

First Pass

  • 0.5
  • 0.5
  • 0.5
  • 0.5
  • 0.5
  • 0.5
  • 0.5
  • 0.5
  • 1
  • 0.5
  • 0.5
  • 0.6225
  • 0.6225
  • 0.6225
  • 0.6225
  • 0.6508
  • 0.6508
  • 0.6508
  • 0.6508
  • Error=1-0.6508=0.3492
  • G3=(1)(0.3492)=0.3492
  • G2= (0.6508)(1-0.6508)(0.3492)(0.5)=0.0397
  • G1= (0.6225)(1-0.6225)(0.0397)(0.5)(2)=0.0093
  • Gradient of the neuron= G =slope of the transfer function×[Σ{(weight of the neuron to the next neuron) × (output of the neuron)}]
  • Gradient of the output neuron = slope of the transfer function × error

Weight Update 1

  • New Weight=Old Weight + {(learning rate)(gradient)(prior output)}
  • 0.5+(0.5)(0.3492)(0.6508)
  • 0.6136
  • 0.5124
  • 0.5124
  • 0.5124
  • 0.6136
  • 0.5124
  • 0.5047
  • 0.5047
  • 0.5+(0.5)(0.0397)(0.6225)
  • 0.5+(0.5)(0.0093)(1)

Second Pass

  • 0.5047
  • 0.5124
  • 0.6136
  • 0.6136
  • 0.5047
  • 0.5124
  • 0.5124
  • 0.5124
  • 1
  • 0.5047
  • 0.5047
  • 0.6391
  • 0.6391
  • 0.6236
  • 0.6236
  • 0.8033
  • 0.6545
  • 0.6545
  • 0.8033
  • Error=1-0.8033=0.1967
  • G3=(1)(0.1967)=0.1967
  • G2= (0.6545)(1-0.6545)(0.1967)(0.6136)=0.0273
  • G1= (0.6236)(1-0.6236)(0.5124)(0.0273)(2)=0.0066

Weight Update 2

  • New Weight=Old Weight + {(learning rate)(gradient)(prior output)}
  • 0.6136+(0.5)(0.1967)(0.6545)
  • 0.6779
  • 0.5209
  • 0.5209
  • 0.5209
  • 0.6779
  • 0.5209
  • 0.508
  • 0.508
  • 0.5124+(0.5)(0.0273)(0.6236)
  • 0.5047+(0.5)(0.0066)(1)

Third Pass

  • 0.508
  • 0.5209
  • 0.6779
  • 0.6779
  • 0.508
  • 0.5209
  • 0.5209
  • 0.5209
  • 1
  • 0.508
  • 0.508
  • 0.6504
  • 0.6504
  • 0.6243
  • 0.6243
  • 0.8909
  • 0.6571
  • 0.6571
  • 0.8909

Weight Update Summary

  • W1: Weights from the input to the input layer
  • W2: Weights from the input layer to the hidden layer
  • W3: Weights from the hidden layer to the output layer

Training Algorithm

  • The process of feedforward and backpropagation continues until the required mean squared error has been reached.
  • Typical mse: 1e-5
  • Other complicated backpropagation training algorithms also available.

Why Gradient?

  • O1
  • O2
  • O = Output of the neuron
  • W = Weight
  • N = Net input to the neuron
  • W1
  • W2
  • N = (O1×W1)+(O2×W2)
  • O3 = 1/[1+exp(-N)]
  • Error = Actual Output – O3
  • To reduce error: Change in weights:
    • Learning rate
    • Rate of change of error w.r.t rate of change of weight
      • Gradient: rate of change of error w.r.t rate of change of ‘N’
      • Prior output (O1 and O2)
  • 0
  • Input
  • Output
  • 1

Gradient in Detail

  • Gradient : Rate of change of error w.r.t rate of change in net input to neuron
    • For output neurons
      • Slope of the transfer function × error
    • For hidden neurons : A bit complicated ! : error fed back in terms of gradient of successive neurons
      • Slope of the transfer function × [Σ (gradient of next neuron × weight connecting the neuron to the next neuron)]
      • Why summation? Share the responsibility!!
    • Therefore: Credit Assignment Problem

An Example

  • 1
  • 0.4
  • 0.731
  • 0.598
  • 0.5
  • 0.5
  • 0.5
  • 0.5
  • 0.6645
  • 0.6645
  • 0.66
  • 0.66
  • 1
  • 0
  • Error = 1-0.66 = 0.34
  • Error = 0-0.66 = -0.66
  • G1=0.66×(1-0.66)×(-0.66)= -0.148
  • G1=0.66×(1-0.66)×(0.34)= 0.0763
  • Reduce more
  • Increase less

Improving performance

  • Changing the number of layers and number of neurons in each layer.
  • Variation in Transfer functions.
  • Changing the learning rate.
  • Training for longer times.
  • Type of pre-processing and post-processing.

Applications

  • Used in complex function approximations, feature extraction & classification, and optimization & control problems
  • Applicability in all areas of science and technology.

Yüklə 0,64 Mb.

Dostları ilə paylaş:




Verilənlər bazası müəlliflik hüququ ilə müdafiə olunur ©azkurs.org 2024
rəhbərliyinə müraciət

gir | qeydiyyatdan keç
    Ana səhifə


yükləyin