22.
k
j
i
a
4
2
va
j
i
b
5
vektorlar berilgan.
3
2
a
b
a b
ni hisoblang.
23. Ikkita nol bo`lmagan perpendikulyar vektorlarning skalyar ko`paytmasini toping.
24.𝐴(1; 7) nuqtadan 2𝑥 − 𝑦 + 1 = 0 to`g`ri chiziqqacha masofa topilsin.
25.
x
x
y
ln
2
2
funksiyaning hosilasini toping. A.4𝑥 −
1
𝑥
B. 2𝑥 −
1
𝑥
C. 4𝑥 +
1
𝑥
2
D. 4𝑥 +
1
𝑥
26. Tomonlari o`rtalarining koordinatalari (0; −4), (2; 1) 𝑣𝑎 (−4; −1) bo’lgan uchburchak berilgan. Shu
uchburchakning (−4; −1) nuqta yotgan tomon qarshisidagi burchak topilsin.
27. Agar |𝑎⃗| = 3, |𝑏⃗⃗| = 26, |𝑎⃗ × 𝑏⃗⃗| = 72 bo`lsa, 𝑎⃗ ∙ 𝑏⃗⃗ ni toping.
28. 𝐴(−1; 1; −2) nuqtadan 𝐵(−2; 1; 3), 𝐶(1; 1; 1), 𝐷(4; −5; −2) shu uch nuqtadan utuvchi
tekislikkacha
masofa topilsin.
28. (
3 −1
5 −2
) ∙ 𝑋 ∙ (
5 6
7 8
) = (
14 16
9
10
) tenglikni qanoatlantiruvchi 𝑋 matritsaning bosh diagonal
elementlari
yig`indisi topilsin
29. {
𝑥 − 3𝑦 − 3𝑧 = 1
4𝑥 + 𝑦 − 5𝑧 = 24
5𝑥 − 4𝑦 − 9𝑧 = 22
chiziqli tenglamalar sistemasini qanoatlantiruvchi (𝑥; 𝑦; 𝑧) dagi 𝑥 ni toping.
30.
2
3
1
1
2
?
A. (
5
1
1 10
) B. (
4 1
1 9
)
C. (
−1 1
1
9
) D. (
5
−1
−1
10
)
31.
3
2
)
(
2
x
x
x
f
funksiyaning o`zgarish sohasi topilsin.
32.
3
;
4
;
0
а
va
0
;
5
;
0
b
vektorlar orasidagi burchak topilsin.
33. (
2 −3 4
2
1
5
1
1
3
) = 𝐴 matritsaga teskari matritsaning 1-satr 2-ustun elementini toping.
34. Tenglamani yeching.
3
1
8
15
9
30
2
9
х
х
= 0.
A. -1 B. 2
C. 3
D. -4
35.
2
4
4
4
2
2
1
2
z
y
x
z
y
x
z
y
x
sistemadan 𝑥 + 𝑦 + 𝑧 ni toping.
36. Uchlari А(-5;3), В(2;0) va С(2;4) nuqtalarda bo’lgan uchburchakning AE medianasi yotgan to`g`ri
chiziq
tenglamasi topilsin.
37. Uchlari
М
1
(х;6) va М
2
(-3; у) nuqtalarda bo’lgan kesma N(2;-2) nuqtada teng ikkiga bo’linadi. М
1
va
М
2
nuqtalarni toping.
38.
1
16
9
2
2
у
х
Ellipsning о‘qlariga yasalgan tо‘g‘ri to’rtburchakni diagonalini tenglamasini tuzing.
39. 𝑦 = sin(3𝑥 + 8) + 2 funksiyaning hosilasi topilsin.
40.Tomonlari o`rtalarining koordinatalari (0; −4), (2; 1) 𝑣𝑎 (−4; −1) bo’lgan uchburchak berilgan. Shu
uchburchakning (−4; −1) nuqta yotgan tomon qarshisidagi burchak topilsin.
41. Agar |𝑎⃗| = 3, |𝑏⃗⃗| = 26, |𝑎⃗ × 𝑏⃗⃗| = 72 bo`lsa, 𝑎⃗ ∙ 𝑏⃗⃗ ni toping.
42. 𝐴(−1; 1; −2) nuqtadan 𝐵(−2; 1; 3), 𝐶(1; 1; 1), 𝐷(4; −5; −2) shu uch nuqtadan utuvchi tekislikkacha
masofa topilsin.
43. (
3 −1
5 −2
) ∙ 𝑋 ∙ (
5 6
7 8
) = (
14 16
9
10
) tenglikni qanoatlantiruvchi 𝑋 matritsaning
bosh diagonal elementlari
yig`indisi topilsin.
44. {
𝑥 − 3𝑦 − 3𝑧 = 1
4𝑥 + 𝑦 − 5𝑧 = 24
5𝑥 − 4𝑦 − 9𝑧 = 22
chiziqli tenglamalar sistemasini qanoatlantiruvchi (𝑥; 𝑦; 𝑧) dagi 𝑥 ni toping.
45.
11
3
2
1
3
2
5
2
3
z
y
x
z
y
x
z
y
x
sistemadan 𝑧 ni toping.
46.
0
6
2
x
y
va
8
3
x
y
to’g’ri chiziqlar orasidagi
burchakni toping
47.
3
;
2
;
6
а
va
5
;
0
;
0
b
vektorlar orasidagi burchak topilsin.
48. (
2 −3 4
2
1
5
1
1
3
) = 𝐴 matritsaga teskari matritsaning 1-satr 1-ustun elementini toping.
49. Tenglamani yeching.
6
1
8
10
3
10
4
9
х
х
= 0.
50.
2
4
3
i
k
i
j
topilsin.
51.
𝑥−1
2
=
𝑦+2
3
=
𝑧
2
to`g`ri chiziq va 𝑥 − 𝑦 + 𝑧 + 1 = 0 tekislik kesishish nuqtasi topilsin.
52. Uchlari А(10;0), O(0;0) va С(0;4) nuqtalarda bo’lgan uchburchakning OD balandligi yotgan to`g`ri chiziq
tenglamasi topilsin.
53. 𝑥
2
+ 𝑦
2
+ 4𝑥 + 4𝑦 = 0 aylananing markazi topilsin.
54. 𝑦 = cos (5 − 6x) + 12 funksiyaning hosilasi topilsin.
55. Tomonlari o`rtalarining koordinatalari (0; −4), (2; 1) 𝑣𝑎 (−4; −1) bo’lgan uchburchak berilgan. Shu
uchburchakning (−4; −1) nuqta yotgan tomon qarshisidagi burchak topilsin.
56. Agar |𝑎⃗| = 3, |𝑏⃗⃗| = 26, |𝑎⃗ × 𝑏⃗⃗| = 72 bo`lsa, 𝑎⃗ ∙ 𝑏⃗⃗ ni toping.
57. 𝐴(−1; 1; −2) nuqtadan 𝐵(−2; 1; 3), 𝐶(1; 1; 1), 𝐷(4; −5; −2) shu uch nuqtadan utuvchi tekislikkacha
masofa topilsin.
58. (
3 −1
5 −2
) ∙ 𝑋 ∙ (
5 6
7 8
) = (
14 16
9
10
) tenglikni qanoatlantiruvchi 𝑋 matritsaning bosh diagonal elementlari
yig`indisi topilsin.
59. {
𝑥 − 3𝑦 − 3𝑧 = 1
4𝑥 + 𝑦 − 5𝑧 = 24
5𝑥 − 4𝑦 − 9𝑧 = 22
chiziqli tenglamalar sistemasini qanoatlantiruvchi (𝑥; 𝑦; 𝑧) dagi 𝑥 ni toping.
60. {
2𝑥 − 3𝑦 + 𝑧 = 5
−𝑥 + 4𝑦 − 3𝑧 = −10
4𝑥 − 2𝑦 + 𝑧 = 7
sistemadan 𝑥
2
+ 𝑦
2
+ 𝑧
2
ni toping.
61. 𝐴(−1; 2) 𝑣𝑎 𝐵(3; 5) nuqtalardan o`tuvchi to`g`ri chiziq tenglamasini toping.
62.
0
7
2
Dostları ilə paylaş: