67. 𝑥
2
+ 𝑦
2
+ 4𝑥 − 6𝑦 = 0 aylananing markazi topilsin.
68.
2
4
3
i
k
i
j
topilsin.
69. 𝑦 = sin
2
(3𝑥 + 8) + 2 funksiyaning hosilasi topilsin.
70. Tomonlari o`rtalarining koordinatalari (0; −4), (2; 1) 𝑣𝑎 (−4; −1) bo’lgan uchburchak berilgan. Shu
uchburchakning (−4; −1) nuqta yotgan tomon qarshisidagi burchak topilsin.
71. Agar |𝑎⃗| = 3, |𝑏⃗⃗| = 26, |𝑎⃗ × 𝑏⃗⃗| = 72 bo`lsa, 𝑎⃗ ∙ 𝑏⃗⃗ ni toping.
72. 𝐴(−1; 1; −2) nuqtadan 𝐵(−2; 1; 3), 𝐶(1; 1; 1), 𝐷(4; −5; −2) shu uch nuqtadan utuvchi
tekislikkacha
masofa topilsin.
73. (
3 −1
5 −2
) ∙ 𝑋 ∙ (
5 6
7 8
) = (
14 16
9
10
) tenglikni qanoatlantiruvchi 𝑋 matritsaning
bosh diagonal elementlari
yig`indisi topilsin.
74. {
𝑥 − 3𝑦 − 3𝑧 = 1
4𝑥 + 𝑦 − 5𝑧 = 24
5𝑥 − 4𝑦 − 9𝑧 = 22
chiziqli tenglamalar sistemasini qanoatlantiruvchi (𝑥; 𝑦; 𝑧) dagi 𝑥 ni toping.
75. {
2𝑥 − 3𝑦 + 𝑧 = 5
−𝑥 + 4𝑦 − 3𝑧 = −5
4𝑥 − 2𝑦 + 𝑧 = 6
sistemadan 𝑥
2
+ 𝑦
2
+ 𝑧
2
ni toping. 2.
2
4
3
i
k
i
j
topilsin. A. 3𝑖⃗ + 4𝑗⃗ − 5𝑘
⃗⃗
76.
0
1
2
x
y
va
9
3
x
y
to’g’ri chiziqlar orasidagi burchakni toping.
77. (
2 −3 4
2
1
5
1
1
3
) = 𝐴 matritsaga teskari matritsaning 2-satr 2-ustun elementini toping.
78. Tenglamani yeching.
3
1
8
5
3
10
6
3
27
х
х
= 0
79.
0
;
2
;
0
а
va
0
;
1
;
0
b
vektorlar orasidagi burchak topilsin.
80.
𝑥
2
36
−
𝑦
2
9
= 1 giperbolaning fokuslari orasidagi masofani toping.
81. 𝑎⃗(3; −4) vektorni 𝑏⃗⃗(4; −3) vektordagi proyeksiyasi topilsin.
82. 𝑥
2
+ 𝑦
2
− 4𝑥 + 4𝑦 = 0 aylananing markazi topilsin.
83. 𝑦 = 𝑥
3
− 𝑒
2𝑥
funksiyaning hosilasi topilsin.
84. Tomonlari o`rtalarining koordinatalari (0; −4), (2; 1) 𝑣𝑎 (−4; −1) bo’lgan uchburchak berilgan. Shu
uchburchakning (−4; −1) nuqta yotgan tomon qarshisidagi burchak topilsin.
85. Agar |𝑎⃗| = 3, |𝑏⃗⃗| = 26, |𝑎⃗ × 𝑏⃗⃗| = 72 bo`lsa, 𝑎⃗ ∙ 𝑏⃗⃗ ni toping.
86. 𝐴(−1; 1; −2) nuqtadan 𝐵(−2; 1; 3), 𝐶(1; 1; 1), 𝐷(4; −5; −2) shu uch nuqtadan utuvchi tekislikkacha
masofa topilsin.
87. (
3 −1
5 −2
) ∙ 𝑋 ∙ (
5 6
7 8
) = (
14 16
9
10
) tenglikni qanoatlantiruvchi 𝑋 matritsaning bosh diagonal elementlari
yig`indisi topilsin.
88. {
𝑥 − 3𝑦 − 3𝑧 = 1
4𝑥 + 𝑦 − 5𝑧 = 24
5𝑥 − 4𝑦 − 9𝑧 = 22
chiziqli tenglamalar sistemasini qanoatlantiruvchi (𝑥; 𝑦; 𝑧) dagi 𝑦
ni toping.
89. Uchlari 𝐴(1; 2; −3), 𝐵(−2; 3; 4), 𝐶(0; 2; 3) nuqtalarda bo’lgan uchburchakning yuzi topilsin.
90. (2𝑖⃗ + 𝑗⃗ + 𝑘) × (3𝑖⃗ − 4𝑗⃗ + 2𝑘
⃗⃗) topilsin.