y=tgx va y=ctgx funksiyalarning hosilalari.
U shbu funksiyalarning hosilalarini topish uchun bo‘linmaning hosilasini topish qoidasidan foydalanamiz:
.
Xuddi shunga o‘xshash formulani ham keltirib chiqarish mumkin. 11-chizma
Trigonometrik funksiyalarning argumentlari x erkli o‘zgaruvchining u(x) funksiyasi bo‘lsa, u holda murakkab funksiyaning hosilasini topish qoidasiga ko‘ra quyidagi formulalar o‘rinli bo‘ladi:
(sinu)’=u’cosu, (cosu)’=-u’sinu, .
Misol.y=sinx funksiya grafigi koordinatalar boshida Ox o‘qi bilan qanday burchak tashkil etadi?
Yechish. Buning uchun y=sinx funksiya grafigiga abssissasi x=0 bo‘lgan nuqtada o‘tkazilgan urinmaning burchak koeffitsientini topamiz: y’=cosx, demak f’(0)=cos0=1, burchak koeffitsienti tg=1, bundan izlanayotgan burchak /4 ga teng.
Bir tomonli hosilalar Ta’rif. Agar x+0 (x-0) da nisbatning limiti
mavjud va chekli bo‘lsa, bu limit f(x) funksiyaning x0 nuqtadagi o‘ng (chap) hosilasi deb ataladi va f’(x0+0) (f’(x0-0)) kabi belgilanadi.
Odatda funksiyaning o‘ng va chap hosilalari bir tomonli hosilalar deb ataladi.
Yuqoridagi misoldan, f(x)=|x| funksiyaning x=0 nuqtadagi o‘ng hosilasi 1 ga, chap hosilasi - 1 ga tengligi kelib chiqadi.
Funksiyaning hosilasi ta’rifi va bir tomonli hosila ta’riflardan hamda funksiya limiti mavjudligining zaruriy va yyetarli shartidan quyidagi teoremaning o‘rinli ekanligi kelib chiqadi:
Teorema. Aytaylik f(x) funksiya x0 nuqtaning biror atrofida uzluksiz bo‘lsin. U holda f(x) funksiya x0 nuqtada f’(x0) hosilaga ega bo‘lishi uchun f’(x0+0), f’(x0-0) lar mavjud va f’(x0+0)=f’(x0-0) tenglikning o‘rinli bo‘lishi zarur va yyetarli bo‘ladi.