evalm(1/A); 2) inverse(A).
A matrisani transponirlash– bu satr va ustunlarning o’rinlarini almashtirishdir. Natijada olingan matrisa transponirlangan deyiladi va A' bilan belgilanadi. Transponirlangan A' matrisa transpose(A) buyrug’i bilan hisoblanadi.
Masalan, oldingi punkda berilgan A matrisa uchun unga teskari va transponirlangan matrisani topamiz.
> inverse(A);
> multiply(A,%);
> transpose(A);
Matrisa turini aniqlash.
Matrisaning musbat yoki manfiy aniqlanganligi definite(A,param) buyrug’i yordamida aniqlanadi, bu yerda param quyidagi qiymatlarni qabul qilishi mumkin: 'positive_def' – musbat aniqlangan (A>0), 'positive_semidef' – manfiymas aniqlangan (A≥0), 'negative_def' – manfiy aniqlangan (A<0), 'negative_semidef' –musbat emas aniqlangan (A≤0).
Bajarilish natijasida konstanta true – chin , false – yolg’on bo’lishi mumkin. Masalan:
> A:=matrix([[2,1],[1,3]]);
> definite(A,'positive_def');
true
A matrisaning ortogonalligi orthog(A) orqali tekshiriladi.
> V:=matrix([[1/2,1*sqrt(3)/2],
[1*sqrt(3)/2,-1/2]]);
> orthog(V);
true
Matrisadan iborat funksiya.
A matrisani n darajaga ko’tarish evalm(A^n) buyrug’i orqali amalga oshiriladi. eA matrisali eksponentasini hisoblash exponential(A) buyrug’i orqali amalga oshirilishi mumkin. Naprimer:
> T:=matrix([[5*a,2*b],[-2*b,5*a]]);
> exponential(T);
> evalm(T^2);
Misollar
1. Matrisa berilgan: , , . Quyidagilarni toping: (AB)C , detA, detB, detC, det[(AB)C]. Tering:
> with(linalg):restart;
> A:=matrix([[4,3],[7,5]]):
> B:=matrix([[-28,93],[38,-126]]):
> C:=matrix([[7,3],[2,1]]):
> F:=evalm(A&*B&*C);
> Det(A)=det(A); Det(B)=det(B); Det(C)=det(C); Det(F)=det(F);
Det(A)=- 1
Det(B)= - 6
Det(C)=1
Det(F)=6
2. Matrisa berilgan: , toping: detA, , A’, det(M22). Tering:
> A:=matrix([[2,5,7],[6,3,4],[5,-2,-3]]);
> Det(A)=det(A);
Det(A)= - 1
> transpose(A);
> inverse(A);
> det(minor(A,2,2));
- 41
3. Matrisa rangini toping: .
> A:=matrix([[8,-4,5,5,9], [1,-3,-5,0,-7], [7,-5,1,4,1], [3,-1,3,2,5]]):
> r(A)=rank(A);
r(A)=3
4. Hisoblang , bu yerda .
> exponential([[3,-1],[1,1]]);
5. Matrisa berilgan: . Ko’phad qiymatini toping: .
> A:=matrix([[5,1,4],[3,3,2],[6,2,10]]):
> P(A)=evalm(A^3-18*A^2+64*A);
Dostları ilə paylaş: |