5-mavzu: Kombinatorikaning asosiy qoidalariga doir misollar yechish Kombinatorikaning 1-qoidasi: Agar qandaydir A


Formulalar. Formulalarning teng kuchliligi



Yüklə 69,74 Kb.
səhifə10/11
tarix16.12.2023
ölçüsü69,74 Kb.
#183119
1   2   3   4   5   6   7   8   9   10   11
5-mavzu Kombinatorikaning asosiy qoidalariga doir misollar yech-fayllar.org

1.3. Formulalar. Formulalarning teng kuchliligi

Ta’rif 3. Formula deb:
  1. Shtrixlar yoki indekslar bilan ta‘minlangan fikr yoki fikr o‘zgaruvchilarini anglatadigan lotin alfaviti bosh harflari;


  2. Agar α va β – formula bo‘lsa, u holda


⌐α, α&β, α\/β, α→β, α~β lar ham formula hisoblanadi;


  1. 1- va 2- punktlarda aytilgan formulalardan boshqa formulalar yo‘q.


Formulalar kichik gotik harflar bilan belgilanadi: α, β, γ, δ, …. Agar A1, A2, …, An - α formulani yozishdagi barcha harflar bo’lsa, u holda α=α(A1, A2, …, An) kabi belgilanadi. Masalan: α(A)= ⌐A, β(A, B, C)=A&B→C


Formulalarda qavslarni kamaytirish uchun amallarning bajarilish ketma-ketligi quyidagicha kelishib olingan:

  1. tashqi qavslar tashlanadi; 2)boshlanishida qavslar ichida;


3) qolgan amallarning ta’siri quyidagicha tartibda kamayadi: ⌐ , (&, , ), , (→, ),  , qavslarda teng kuchli bog‘liqliklar.



Ta‘rif 4. α(A1, A2, …, An) formulaning mantiqiy imkoniyati deb, A1, A2, …, An o‘zgaruvchilarning bo‘lishi mumkin bo‘lgan barcha rostlik qiymatlariga aytiladi.

Ta‘rif 5. α formulaning barcha mantiqiy imkoniyatlarini o‘z ichiga olgan jadvalga α formulaning mantiqiy imkoniyatlari jadvali deyiladi.

Ta’rif 6. Agar α va β formulalar uchun umumiy bo‘lgan mantiqiy imkoniyatlarda α va β bir xil qiymatlar qabul qilsa, u holda α va β formulalar teng kuchli deyiladi va ular α≡β kabi belgilanadi.

Ta’rif 7. Agar barcha mantiqiy imkoniyatlarda α formula bir xil 1 ga teng (0 ga teng) qiymat qabul qilsa, α formula ayniy haqiqat (ayniy yolg‘on) yoki tavtologiya (qarama-qarshilik) deyiladi va α≡1 (α≡0) kabi belgilanadi. |=α yozuv α – tavtologiya ekanligini anglatadi.


Yüklə 69,74 Kb.

Dostları ilə paylaş:
1   2   3   4   5   6   7   8   9   10   11




Verilənlər bazası müəlliflik hüququ ilə müdafiə olunur ©azkurs.org 2024
rəhbərliyinə müraciət

gir | qeydiyyatdan keç
    Ana səhifə


yükləyin