Binar 0 operatsiya G to`plamda gruppa hosil qiluvchi asosiy operatsiya deb hisoblanadi.
Ta`rif: Agar algebra gruppasi bo`lib, 0 operatsiyasi kommutativ, ya`ni ( ) uchun aob=boa tenglik o`rinli bo`lsa, u holda gruppa o operatsiyaga nisbatan kommutativ gruppa yoki Abel gruppasi deyiladi.
Ta`rif: Agar gruppadagi asosiy operatsiya qo`shish (ko`paytirish) amali bo`lsa, u holda bunday gruppaga additiv (multiplikativ) gruppa, agar additiv gruppada qo`shish amali kommutativ bo`lsa, u holda bunday gruppaga additiv–abel gruppa deyiladi.
Masalan, additiv-abel gruppa, multiplikativ gruppa bo`lmaydi (chunki ( bo`lgabda ) bo`ladi.
Ta`rif: Agar G to`plamda aniqlangan binar o operatsiya assosiativ bo`lsa, u holda G to`plam yarim gruppa deyiladi.
Masalan, algebra yarim gruppa bo`ladi.
Ta`rif: Neytiral elementga ega bo`gan yarim gruppa monoid deb ataladi.
Masalan, algebra monoid bo`ladi. algebra yarim gruppa bo`ladi, lekin monoid bo`lmaydi.
Ta`rif: gruppaning M qism to`plami o binar operatsiyaga nisbatan gruppa tashkil etsa, u holda M ga gruppaning qism gruppasi deyialdi.
Qism gruppa tushunchasi mustaqil ta`limda batafsil o`rganiladi.
Gruppaning quyidagi hossalari mavjud:
Gruppadagi asosiy operatsiga nisbatan neytiral va teskari elementlar mavjud, ular yagona bo`ladi.
Har qanday G multiplikativ gruppada bo`lish munosabati o`rinli, ya`ni elementlar uchun bo`lib, ular uchun a x=b va ya=b tenglamalar va yagona yechimlarga ega bo`ladi;
Har qanday gruppada elementlarni chap va o`ng tomondan qisqartirish qonuni o`rinli;
G gruppaning elementiga teskari element a ning o`zi bo`ladi;
gruppaning ixtiyoriy n ta elementi shu gruppadan aniqlangan algebrayik amalga nisbatan assosiativ bo`ladi;
elementlarning ko`paytmasi bo`lgan elementga teskari element element bo`ladi.
, bo`lsa u holda , faqat o`rin almashinuvchi a va b elementlari uchun bo`ladi.
Bulardan tashqari quyidagi munosabatlar ham o`rinli bo`ladi:
nx+mx=(m+n)x;
m(nx)==mnx;
mx-nx=(m-n)x.
Bu tenglama dir.
Yuqoridagi 7 ta hossaning isboti da keltirilgan.
Adabiyotlar: R. N. Nazarov, B. T. Toshpo`latov, A. D. Do`simbetov. Algebra va sonlar nazariyasi. 1-qism. Toshkent. O`qituvchi. 1993 y. (35-39 betlar)
Куликов Л. Я. Алгебра и теория чисел. Москва: Высш.шк. 1979 г. (стр 5-14).gan.