6 -misol (modelning homomorf tasvirlari).
Model <{0,1}; <> <{0,1} modelida homomorfik tarzda ko'rsatilishi mumkin; Ј>, <{0}; {(0,0)}> va boshqalar, lekin ular asl modelning submodellari emas.
1-Teorema (quyi tizimlarning kesishishi). Har qanday algebraik tizimning o'zboshimchalik bilan quyi tizimlari to'plamining kesishishi bo'sh yoki quyi tizimdir.
7 -misol (algebralarning kesishishi).
Algebralar <{0, 2, 4}; (+ mod 6)> va <{0, 3}; (+ mod 6)> - algebraning subalgebralari <{0, 1, 2, 3, 4, 5}; (+ mod 6)>. Bu algebralarning kesishishi algebra <{0}; +> bitta elementdan tashkil topgan qo'llab -quvvatlash - 0 va biz +bilan belgilagan operatsiya, chunki u faqat 0 elementga tegishli va oddiy qo'shilish natijasiga to'g'ri keladi.
9-ta'rif (Algebraik tizimda to'plamni yopish). A to'plamini o'z ichiga olgan minimal algebraik tizimni qo'llab -quvvatlashi algebraik tizimda A to'plamining yopilishi deb ataladi.
8 -misol (to'plamning yopilishi).
- bu butun sonlarning Z to'plami, chunki Bu algebra va agar algebraning subalgebrasi bo'lsa -1 va 1 ni o'z ichiga oladi, unda barcha tamsayılar bor.
Algebraik tizim o'zining quyi tizimiga izomorf bo'lishi mumkin.
9 -misol (subalgebra algebradan izomorfik).
Keling, va <{2,4,6, ...}; +> izomorfikdir. Biz j: N ® {2,4,6, ...} xaritasini j (x) = 2 x sifatida aniqlaymiz. Bu xaritalash bijektsiya va j (x + y) = 2 (x + y) = 2 x + 2 y = j (x) + j (y).
1.4 Algebraik tizimlarning bevosita mahsuloti
10 -ta'rif (Tizimlarning to'g'ridan -to'g'ri mahsuloti). A = va B = algebraik tizimlarining to'g'ridan -to'g'ri mahsuloti - bir xil algebraik tizim A ґ B = bir xil turdagi
salom ((x1, y1), ..., (xmi, ymi)) = (fi (x1, ..., xmi), gi (y1, ..., ymi))
((x1, y1), ..., (xmj, ymj)) O qj O (x1, ..., xmj) O rj va (y1, ..., ymj) O pj
har qanday x1, x2, ... O A, y1, y2, ... O B, har qanday i uchun: 1 Ј i Ј k, har qanday j: 1 Ј j Ј l uchun.
A algebraik tizimning to'g'ridan -to'g'ri mahsuloti n marta algebraik sistemaning darajasi deb ataladi va An bilan belgilanadi.
10 -misol (to'g'ridan -to'g'ri mahsulot).
A = o'zingiz haqingizda.
A2 algebraik tizimini qo'llab -quvvatlashi koordinatali qo'shish operatsiyalari va tartib munosabati with (x1, y1) Ј (x2, y2) Y x1 Ј x2 va y1 with bo'lgan haqiqiy sonlar juftlari (x, y). y2, ya'ni bitta juftlik boshqasidan kam yoki teng, agar birinchi juftlikning har bir koordinatasi ikkinchi juftning mos keladigan koordinatasidan kichik yoki teng bo'lsa.