Aniq integralning asosiy xossalari
1- xossa: O’zgarmas ko’paytuvchini aniq integral belgisining tashqarisiga chiqarish mumkin.
Isbot:
2-xossa: Bir necha funksiyalar algebraik yig’indisining aniq integrali qo’shiluvchilar aniq integrallarning algebraik yig’indisiga teng.
Masalan:
3-xossa. Agar [a, b] kesmada f(x) va (x) funksiyalar uchun f(x) (x) shart bajarilsa, u holda bo’ladi.
4-xossa: Agar [a,b] kesma bir necha qismga bo’linsa, u holda [a,b] kesma bo’yicha aniq integral har bir qism bo’yicha olingan aniq integrallar yig’indisiga teng.
Masalan: a bo’lsa, u holda
5-xossa: Aniq integralning qiymati funksiyaning ko’rinishiga va integrallash chegaralariga bog’liq, lekin integral ostidagi ifodaning harflariga bog’liq emas.
3. Yoy uzunligini hisoblash
egri chiziq kesmada berilgan bo`lib, yassi va uzluksiz bo`lsin. U holda, funksiya shu kesmada uzluksiz hosilaga ega bo`ladi. Egri
chiziqni ta bo`lakka ajratamiz va bo`linish nuqtalarini kesmalar yordamida ketma- ket tutashtiramiz. Natijada, hosil bo`lgan qism yoychalarning har biriga bitta kesmacha mos keladi. Agar egri chiziqni bo`lishni davom ettirsak, qism yoychalarning uzunligiga ularga mos keluvchi kesmalarning uzunligi yaqinlashadi. Funksiya grafigining bo`linish nuqtalaridan o`qiga proyeksiyalar tushiramiz. Undagi har ikki nuqta orasidagi masofalarni lar bilan belgilaymiz. Ixtiyoriy va nuqtalar ordinatalari farqini bilan belgilaymiz. U holda, Pifagor teoremasiga asosan kesmaning uzunligi quyidagicha bo`ladi.
(1)
Hosilaning ta`rifiga asosan: u holda
(2)
Kesmalar hosil qilgan siniq chiziqning uzunligi
(3)
dan iborat bo`ladi. Egri chiziqning uzunligi ni topish uchun (3) ning dagi limitini olish lozim, ya`ni:
. (4)
(4) – integral yig`indidan iborat. Uni integral ko`rinishida ifodalash mumkin:
yoki (5)
(5) formula yassi egri chiziq, ya`ni yoyning uzunligini topish formulasidir.
To`g`ri burchakli koordinatalar sistemasida yoy differensiali quyidagi formula ko`rinishida ifodalanadi:
yoki (6)
Dostları ilə paylaş: |