xossalarini ifodalovchi 1 va 2- teoremalarga ko’ra (4.8) tenglamaning umumiy yechimi quyidagi teorema orqali ifodalanadi:
6- teorema. Bir jinsli bo’lmagan (4.8) chiziqli ,o’zgarmas koeffitsientli differensial tenglamaning umumiy yechimi bu tenglamaning - xususiy yechimi bilan mos bir jinsli
u”+ a1 y’+a2 y = 0
tenglamaning - umumiy yechimi yig’indisidan iboratdir, ya’ni .
Isboti. . (4.9)
(4.8) tenglamaning yechimi ekanligini ko’rsatamiz.
Buni (4.8) ga qo’yib
a1 a2 f(x)
yoki f(x) (4.10)
tenglikka ega bo’lamiz.