Birinchi tartibli differensial tenglamaning maxsus yechimi



Yüklə 317 Kb.
səhifə1/6
tarix22.05.2023
ölçüsü317 Kb.
#119220
  1   2   3   4   5   6
BIRINCHI TARTIBLI DIFFERENSIAL TENGLAMANING MAXSUS YECHIMI. KLERO TENGLAMASI


BIRINCHI TARTIBLI DIFFERENSIAL TENGLAMANING MAXSUS YECHIMI. KLERO TENGLAMASI. LAGRANJ TENGLAMASI. DIFFERENSIAL TENGLAMALAR SISTEMASI. NORMAL SISTEMA. NOMA’LUMLARNI YO‘QOTISH USULI.
Reja



  1. Birinchi tartibli differensial tenglamaning maxsus yechimi.

  2. Yuqori tartibli tartibi pasayadigan differensial tenglamalar.

  3. Klero tenglamasi

  4. O’zgarmas koeffitsientli bir jinsli bo’lmagan chiziqli differensial tenglamalar.

Yuqori tartibli differensial tenglamalar




Ta’rif. F(x,y,y’,....,y(n))=0 ko’rinishdagi tenglamaga n - tartibli differensial tenglama deyiladi.
Ta’rif. n - tartibli differensial tenglamaning umumiy yechimi deb n ta с1, с2, .... сn - ixtiyoriy o’zgarmas miqdorlarga bog’liq bo’lgan
y= (x, с1, с2, .... сn)
funksiyaga aytiladi. Bu funksiya:

  1. с1,...,сn larning ixtiyoriy qiymatlarida tenglamani qanoatlantiradi;

  2. berilgan y(x0)=y0, (x0)=y1,..., y(n-1)(x0)=yn-1 boshlang’ich shartda с1, с2, .... сn larni shunday tanlash mumkinki,

y= (x, с1, с2, .... сn) funksiya bu boshlang’ich shartni qanoatlantiradi.
Ta’rif. Umumiy yechimdan с1, с2, .... сn miqdorlarning tayin qiymatlarida hosil bo’ladigan funksiya xususiy yechim deyiladi.

Yuqori tartibli tartibi pasayadigan


differensial tenglamalar



  1. y(n)=f(x) ko’rinishidagi tenglama.

y(n)=(y(n-1)) ni e’tiborga olib



ni hosil qilamiz, bunda x0 x ning tayinlangan qiymati, с1 - o’zgarmas miqdor.
Integrallashni shunday davom ettirib

ifodani hosil qilamiz.
Boshlang’ich shartlarni

qanoatlantiruvchi xususiy yechimni topish uchun

Сn=y0, Cn-1=y1, .. ., C1=yn-1


deb olish etarli.

2. y=f(x,y) ko’rinishidagi tenglama.




=p deb, y=pni xosil qilamiz.
Demak,
p= f(x,y)

Bu tenglamani integrallab




- umumiy yechimni topamiz.
munosabatdan esa - umumiy yechimni xosil qilamiz.

3. ko’rinishidagi tenglama ham


deb parametr kiritish bilan
( - )
yuqorida o’rganilgan tenglamaga keltiriladi.
munosabatdan y ni topib, yechim xosil qilinadi.

4. ko’rinishidagi tenglama.


Bu tenglamani yechish uchun deb olamiz.
Ammo p ni y ning funksiyasi deb qaraymiz: p=p(y)
U xolda,



va larni berilgan tenglamaga qo’yib

birinchi tartibli differensial tenglamani xosil qilamiz. Bu tenglamani integrallab p=p(y,c1) yechimni va
munosabatdan

tenglamani olamiz.
Bu tenglamani integrallab, dastlabki tenglamaning
F(x,y,c1,c2)=0

umumiy yechimini xosil qilamiz.



Yüklə 317 Kb.

Dostları ilə paylaş:
  1   2   3   4   5   6




Verilənlər bazası müəlliflik hüququ ilə müdafiə olunur ©azkurs.org 2024
rəhbərliyinə müraciət

gir | qeydiyyatdan keç
    Ana səhifə


yükləyin