1-ta' rif. f1(x) = f2(x) va F1(x) = F2(x) ikki tenglamaning yechimlari to 'plami teng bo 'lsa, teng kuchli deyiladi, ular, уa'ni birinchi tenglamaning har bir yechimi ikkinchi tenglamaning yechimi bo’lsa va aksincha, ikkinchi tenglamaning har qanday yechimi birinchi tenglamani qanoatlantirsa, bu tenglamalar teng kuchlidir.
Bunda biz ikkala tenglama bitta X aniqlanish sohasiga ega deymiz. Boshqacha aytganda, agar f1(x) = f2(x) va F1(x) = F2(x) predikatlar ekvivalent bo’lsa, tenglamalar teng kuchli bo 'ladi.
2-ta'rif. Agar f1(x) = f2(x) tenglamaning yechimlar to'plami F1(x) = F2(x) tenglamaning yechimlar to'plamining qism to'plami bo'lsa, F1(x) = F2(x) tenglama f1(x) = f2(x) tenglamaning natijasi deyiladi.
Boshqacha aytganda, agar f1(x) = f2(x) tenglamaning har bir ildizi F1(x) = F2(x) tenglamani qanoatlantirsa, F1(x) = F2(x) tenglama f1(x) = f2(x) tenglamaning natijasidir.
Masalan, (x + l)2 = 16 tenglama x + 1 = 4 tenglamaning natijasidir. Haqiqatan, x + 1 - 4 tenglama bitta x = 3 ildizga ega. Bu iidizni (x + l)2 = 16 tenglamaga qo'yib, (x +1)2 = 16 rost tenglikni hosil qilamiz. Bu tenglik 3 soni (x + 1)2 = 16 tenglamani ham qanoatlantirishini ko'rsatadi.
Agar ikki tenglamaning har biri ikkinchisining natijasi bo'lsa, bu ikki tenglama teng kuchli deyiladi.
Ba'zan tenglama ikki yoki undan ortiq tenglamalar dizyunksiyasiga teng kuchli bo'ladi. Masalan, (x - 1)(x - 3) = 0 tenglamani va ikki tenglama dizyunksiyasi (2x – 1= 0) (7x - 21) = 0 ni olaylik. (x - 1)(x - 3) = 0 tenglamaning yechimlar to'plami {1; 3}. Agar ikki son ko'paytmasida ko'paytiruvchilardan aqalli bittasi nolga teng bo'lsa, ko'paytma nolga teng bo'ladi, u holda (2x - 2 = 0) U (7x - 21) = 0 tenglamaning dizyunksiyasi x ning barcha qiymatlarida rost mulohaza bo'ladi. x ning bu qiymatlari uchun 2x - 2 = 0 yoki 7x - 21 = 0 mulohazalardan aqalli bittasi rost bo'ladi. Agar x = 1 bo'lsa, 2x - 2 = 0 rost, x — 3 bo'lsa, 7x— 21 =0 ham rost. Demak, {1; 3} dizyunksiyasi rost to'plami bo'ladi. Bu esa (x - l)(x - 3) = 0 tenglamaning (2x -2 = 0)U (7x-21) = 0 dizyunksiyaga teng kuchliligini bildiradi.
x = a tenglamaning yechimini topish juda oson, uning yechimlari to'plami bitta a sondan iborat, T= {a}. Shuning uchun tenglamalarni yechishda ular sodda ko'rinishga ega bo'lgan teng kuchli tenglamalar bilan almashtiriladi, bu almashtirish x=a tenglamaga yoki shunday tenglamalar dizyunksiyasi x = a1 U
x = a2 U... ...Ux = an ga kelguncha davom ettiriladi. U holda berilgan tenglamaning yechimlari to'plami T = {a1; a2; ...; an} bo'ladi. Ba'zan berilgan tenglamadan unga teng kuchli tenglamaga emas, uning natijasiga o'tishga to'g'ri keladi. Bunda yechimlar to'plami kengayadi, shuning uchun oxirida topilgan hamma ildizlarni berilgan tenglamaga qo'yib, tekshiriladi. [36]
Dostları ilə paylaş: |