Boshlang`ich ta`lim ” yo`nalishi 4-bosqich 410-guruh talabasi mamadiyeva hurriyat ning


Sonli ifodalarning tengligi va tengsizligi



Yüklə 1,4 Mb.
səhifə10/19
tarix19.10.2023
ölçüsü1,4 Mb.
#157069
1   ...   6   7   8   9   10   11   12   13   ...   19
Boshlang`ich sinflarda matnli masalalarni tenglamalar yordamida yechish metodikasi 32-mavzu




1.3 Sonli ifodalarning tengligi va tengsizligi



Ikkita sonli ifoda A va В berilgan bo'lsin. Bu ifodalardan A = В tenglik va A > B, A< В va shunga o'xshash tengsizliklarni tuzishimiz mumkin. Bu tenglik va tengsizliklar jumlalar bo'lib, ular rost yoki yolg'on bo'lishi mumkin. A va В ifodalar bir xil sonli qiymatga ega bo'lsa, A = В rost hisoblanadi. Masalan, 2 + 7 = 3 • 3 tenglik rost, chunki bu tenglikning chap va o'ng qismlari 9 ga teng. 7 + 5 = 4 • 5 tenglik esa yolg'on, chunki uning chap qismi 12 ga, o'ng qismi 20 ga teng. 6 : (2 - 2) = 5 tenglik ham yolg'on, chunki 6 : (2 - 2) ifoda sonli qiymatga ega emas.

Shuni eslatib o'tamizki, agar faqat natural sonlar to'plamini qarasak, 4-8+ 10 = 2-3 tenglik yolg'on, chunki N to'plamda 4-8 ifodaning qiymati aniq emas. Biroq natural sonlar to'plamini kengaytirib va manfiy sonlarni kiritgandan keyin bu tenglik rost bo'ladi, chunki uning ikkalasi qiymati 6 ga teng.

Sonli ifodalarning tenglik munosabati refleksivUk, simmetfiklik va tranizitivlik xossalariga esa, ya'ni bu munosabat ekvivalent munosabatdir. Shuning uchun barcha sonli ifodalar to'plami ekvivalentlik guruhlariga bo'linadi, bu guruhlarga bir xil qiymatga ega bo'lgan ifodalar kiradi. Masalan, bitta ekvivalentlik guruhiga

5 + 1, 9 - 3, 2 • 3, 12 : 2 va boshqa ifodalar (ulardan har birining qiymati 6 ga teng) kiradi.

Yuqorida berilgan ta'rifdan, agar A = В va C = D tengliklar rost bo'lsa (bunda, A, B, C, D — sonli ifodalar), u hold a tegishli amallarni bajarish natijasida hosil bo'lgan

(A) + (C) = (B) + (D); (A) - (C) = (B) - (D);

(A) • (C) = (B) • (D); (A): (C) = (B): (D)

tengliklar ham rost bo'ladi.

A < В tengsizlikni (bunda, A va В — sonli ifodalar) biz rost deymiz, agar A va В ifodalar sonli qiymatlarga ega bo'lib, shu bilan birga A ifodaning sonli qiymati В ifodaning sonli qiymatidan kichik bo'lsa. Masalan, (18-3):5<3 + 4 tengsizlik rost, chunki (18 - 3): 5 ning qiymati 3 ga, 3 + 4 ning qiymati 7 ga teng, 3 < 7.

A = B, C< D ko'rinishdagi yozuvlar (bunda, A, B, C, D — sonli ifodalar) mulohaza (jumla) bo'lgani uchun biz ular ustida konyunksiya, dizyunksiya, implikatsiya va boshqa mantiqiy amal­larni bajarishimiz mumkin. Masalan, A < В tengsizlik A < В teng­sizlik va A - В tenglikning dizyunksiyasidir:

< В = (A < B) U (A = B).

< В tengsizlik A < В, А = В mulohazalardan aqalli bittasi rost bo'lsa ham rost bo'ladi. Masalan, (2 • 4 + 15) • 2 < 35 + 19 tengsizlik rost, chunki (2 - 4 + 15) • 2 ifodaning qiymati 46 ga teng, 35+19 ning qiymati esa 54 ga teng, 46 < 54 tengsizlik rost.

A < В < С qo'sh tengsizlik A < В va В < С tengsizliklar­ning konyunksiyasidir. Bu qo'sh tengsizlik A < В va В < С ten­gsizliklarning ikkalasi ham rost bo'lsa, rost bo'ladi. Masalan, 16 + 4<125:5<3-10 tengsizlik rost. Haqiqatan, 16 + 4 ning qiymati 20 ga, 125 : 5 ning qiymati 25 ga, 3 • 10 ning qiymati 30 ga teng. 20 < 25 va 25 < 30 bo'lgani uchun qo'sh tengsizlik rost bo'ladi


Yüklə 1,4 Mb.

Dostları ilə paylaş:
1   ...   6   7   8   9   10   11   12   13   ...   19




Verilənlər bazası müəlliflik hüququ ilə müdafiə olunur ©azkurs.org 2024
rəhbərliyinə müraciət

gir | qeydiyyatdan keç
    Ana səhifə


yükləyin