Differensial hisobning asosiy teoremalari va tatbiqlari. Aniqmasliklarni ochish Reja



Yüklə 235,98 Kb.
səhifə3/13
tarix24.02.2022
ölçüsü235,98 Kb.
#53060
1   2   3   4   5   6   7   8   9   ...   13
1-dars differensial hisobning asosiy teor

Roll teoremasi
Teorema (Roll teoremasi). Agar f(x) funksiya [a;b] kesmada aniqlangan bo‘lib, quyidagi

1) [a;b] da uzluksiz;

2) (a;b) da differensiallanuvchi;

3) f(a)= f(b)

shartlarni qanoatlantirsa, u holda f’(c)=0 bo‘ladigan kamida bitta c (a) nuqta mavjud bo‘ladi.

Isbot. Ma’lumki, agar f(x) funksiya [a;b] kesmada uzluksiz bo‘lsa, u holda funksiya shu kesmada o‘zining eng katta M va eng kichik m qiymatlariga erishadi. Qaralayotgan f(x) funksiya uchun ikki hol bo‘lishi mumkin.

1. M=m, bu holda [a,b] kesmada f(x)=sonst va f’(x)=0 bo‘ladi. Ravshanki, f’(s)=0 tenglamani qanoatlantiradigan nuqta sifatida c(a;b) ni olish mumkin.

2. M>m, bu holda teoremaning f(a)=f(b) shartidan funksiya M yoki m qiymatlaridan kamida birini [a,b] kesmaning ichki nuqtasida qabul qilishi kelib chiqadi. Aniqlik uchun f(c)=m bo‘lsin. Eng kichik qiymatning ta’rifiga ko‘ra x[a,b] uchun f(x) f(c) tengsizlik o‘rinli bo‘ladi.

E ndi f’(c)=0 ekanligini ko‘rsatamiz. Teoremaning ikkinchi shartiga ko‘ra f(x) funksiya (a;b) intervalning har bir x nuqtasida chekli hosilaga ega. Bu shart, xususan c nuqta uchun ham o‘rinli. Demak, Ferma teoremasi shartlari bajariladi. Bundan f’(c)=0 ekanligi kelib chiqadi.



f(c)=M bo‘lgan holda teorema yuqoridagi kabi isbotlanadi.
18-chizma

Roll teoremasiga quyidagicha geometrik talqin berish mumkin (18-chizma)

Agar [a,b] kesmada uzluksiz, (a,b) intervalda differensiallanuvchi f(x) funksiya kesma uchlarida teng qiymatlar qabul qilsa, u holda f(x) funksiya grafigida abssissasi x=c bo‘lgan shunday C nuqta topiladiki, shu nuqtada funksiya grafigiga o‘tkazilgan urinma abssissalar o‘qiga parallel bo‘ladi.

Eslatma. Roll teoremasining shartlari yyetarli bo‘lib, zaruriy hart emas. Masalan, 1) f(x)=x3, x[-1:1] funksiya uchun teoremaning 3-sharti bajarilmaydi.

(f(-1)=-11=f(1)), lekin f’(0)=0 bo‘ladi.

2) funksiya uchun Roll teoremasining barcha shartlari bajarilmaydi, lekin (-1;0) ning ixtiyoriy nuqtasida f’(x)=0 bo‘ladi.


Yüklə 235,98 Kb.

Dostları ilə paylaş:
1   2   3   4   5   6   7   8   9   ...   13




Verilənlər bazası müəlliflik hüququ ilə müdafiə olunur ©azkurs.org 2024
rəhbərliyinə müraciət

gir | qeydiyyatdan keç
    Ana səhifə


yükləyin