Misol. Ushbu limitni xisoblang.
Yechish. Bu holda bo‘lib, ular uchun 1- teoremaning barcha shartlari bajariladi.
Haqiqatan ham,
1) , ;
2) ;
3) bo‘ladi.
Demak, 1-teoremaga binoan .
1-eslatma. Shuni ta’kidlash kerakki, berilgan funksiyalar nisbatining limiti 3) shart bajarilmasa ham mavjud bo‘lishi mumkin, ya’ni 3) shart yyetarli bo‘lib, zaruriy emas.
Masalan, funksiyalar (0;1] da 1), 2) shartlarni qanoatlantiradi va , lekin
mavjud emas, chunki n da
n da esa
.
2-teorema. Agar [c;+) nurda aniqlangan f(x) va g(x) funksiyalar berilgan bo‘lib,
1) (c;+) da chekli f’(x) va g‘(x) hosilalar mavjud va g‘(x)0,
2) ;
3) hosilalar nisbatining limiti ( chekli yoki cheksiz) mavjud bo‘lsa, u holda funksiyalar nisbatining limiti mavjud va
= (3)
tenglik o‘rinli bo‘ladi.
Isbot. Umumiylikni saqlagan holda, teoremadagi c sonni musbat deb olish mumkin. Quyidagi formula yordamida x o‘zgaruvchini t o‘zgaruvchiga almashtiramiz. U holda x+ da t0 bo‘ladi. Natijada f(x) va g(x) funksiyalar t o‘zgaruvchising va funksiyalari bo‘lib, ular (0, ] da aniqlangan. Teoremadagi (2) shartga asosan
bo‘ladi.
Ushbu,
munosabatlardan intervalda hosilalarning mavjudligi kelib chiqadi. So‘ngra teoremaning 3) shartiga ko‘ra
Demak va funksiyalarga 1-teoremani qo‘llash mumkin. Bunda = e’tiborga olsak, (3) tenglikning o‘rinliligi kelib chiqadi.
Dostları ilə paylaş: |